Continuum Theory
continuum theory
Non-regular behavior during the coalescence of liquid-like cellular aggregates
The fusion of cell aggregates widely exists during biological processes such as development, tissue regeneration, and tumor invasion. Cellular spheroids (spherical cell aggregates) are commonly used to study this phenomenon. In previous studies, with approximated assumptions and measurements, researchers found that the fusion of two spheroids with some cell type is similar to the coalescence of two liquid droplets. However, with more accurate measurements focusing on the overall shape evolution in this process, we find that even in the previously-regarded liquid-like regime, the fusion process of spheroids can be very different from regular liquid coalescence. We conduct numerical simulations using both standard particulate models and vertex models with both Molecular Dynamics and Brownian Dynamics. The simulation results show that the difference between spheroids and regular liquid droplets is caused by the microscopic overdamped dynamics of each cell rather than the topological cell-cell interactions in the vertex model. Our research reveals the necessity of a new continuum theory for “liquid” with microscopically overdamped components, such as cellular and colloidal systems. Detailed analysis of our simulation results of different system sizes provides the basis for developing the new theory.
Imposed flow in active liquid crystals
Inspired by ongoing experiments on three dimensional active gels composed of sliding microtubule bundles, we study a few idealized problems in a minimal hydrodynamic model for active liquid crystals. Our aim is to use flow to determine the value of the coefficient of activity in a continuum theory. We consider the case of apolar active particles that form a disordered phase in the absence of flow, and study how activity affects the swimming speed of a prescribed swimmer, as well as the stability of a fluid interface. We also consider flows of active matter in channels or past immersed objects.