Coordinated Activity
coordinated activity
Neural Population Dynamics for Skilled Motor Control
The ability to reach, grasp, and manipulate objects is a remarkable expression of motor skill, and the loss of this ability in injury, stroke, or disease can be devastating. These behaviors are controlled by the coordinated activity of tens of millions of neurons distributed across many CNS regions, including the primary motor cortex. While many studies have characterized the activity of single cortical neurons during reaching, the principles governing the dynamics of large, distributed neural populations remain largely unknown. Recent work in primates has suggested that during the execution of reaching, motor cortex may autonomously generate the neural pattern controlling the movement, much like the spinal central pattern generator for locomotion. In this seminar, I will describe recent work that tests this hypothesis using large-scale neural recording, high-resolution behavioral measurements, dynamical systems approaches to data analysis, and optogenetic perturbations in mice. We find, by contrast, that motor cortex requires strong, continuous, and time-varying thalamic input to generate the neural pattern driving reaching. In a second line of work, we demonstrate that the cortico-cerebellar loop is not critical for driving the arm towards the target, but instead fine-tunes movement parameters to enable precise and accurate behavior. Finally, I will describe my future plans to apply these experimental and analytical approaches to the adaptive control of locomotion in complex environments.
Dynamic maps of a dynamic world
Extensive research has revealed that the hippocampus and entorhinal cortex maintain a rich representation of space through the coordinated activity of place cells, grid cells, and other spatial cell types. Frequently described as a ‘cognitive map’ or a ‘hippocampal map’, these maps are thought to support episodic memory through their instantiation and retrieval. Though often a useful and intuitive metaphor, a map typically evokes a static representation of the external world. However, the world itself, and our experience of it, are intrinsically dynamic. In order to make the most of their maps, a navigator must be able to adapt to, incorporate, and overcome these dynamics. Here I describe three projects where we address how hippocampal and entorhinal representations do just that. In the first project, I describe how boundaries dynamically anchor entorhinal grid cells and human spatial memory alike when the shape of a familiar environment is changed. In the second project, I describe how the hippocampus maintains a representation of the recent past even in the absence of disambiguating sensory and explicit task demands, a representation which causally depends on intrinsic hippocampal circuitry. In the third project, I describe how the hippocampus preserves a stable representation of context despite ongoing representational changes across a timescale of weeks. Together, these projects highlight the dynamic and adaptive nature of our hippocampal and entorhinal representations, and set the stage for future work building on these techniques and paradigms.
Context-Dependent Relationships between Locus Coeruleus Firing Patterns and Coordinated Neural Activity in the Anterior Cingulate Cortex
Ascending neuromodulatory projections from the locus coeruleus (LC) affect cortical neural networks via the release of norepinephrine (NE). However, the exact nature of these neuromodulatory effects on neural activity patterns in vivo is not well understood. Here we show that in awake monkeys, LC activation is associated with changes in coordinated activity patterns in the anterior cingulate cortex (ACC). These relationships, which are largely independent of changes in firing rates of individual ACC neurons, depend on the type of LC activation: ACC pairwise correlations tend to be reduced when tonic (baseline) LC activity increases but are enhanced when external events drive phasic LC responses. Both relationships covary with pupil changes that reflect LC activation and arousal. These results suggest that modulations of information processing that reflect changes in coordinated activity patterns in cortical networks can result partly from ongoing, context-dependent, arousal-related changes in activation of the LC-NE system.
Causal coupling between neural activity, metabolism, and behavior across the Drosophila brain
Coordinated activity across networks of neurons is a hallmark of both resting and active behavioral states in many species, including worms, flies, fish, mice and humans. These global patterns alter energy metabolism in the brain over seconds to hours, making oxygen consumption and glucose uptake widely used proxies of neural activity. However, whether changes in neural activity are causally related to changes in metabolic flux in intact circuits on the sub-second timescales associated with behavior, is unclear. Moreover, it is unclear whether differences between rest and action are associated with spatiotemporally structured changes in neuronal energy metabolism at the subcellular level. My work combines two-photon microscopy across the fruit fly brain with sensors that allow simultaneous measurements of neural activity and metabolic flux, across both resting and active behavioral states. It demonstrates that neural activity drives changes in metabolic flux, creating a tight coupling between these signals that can be measured across large-scale brain networks. Further, using local optogenetic perturbation, I show that even transient increases in neural activity result in rapid and persistent increases in cytosolic ATP, suggesting that neuronal metabolism predictively allocates resources to meet the energy demands of future neural activity. Finally, these studies reveal that the initiation of even minimal behavioral movements causes large-scale changes in the pattern of neural activity and energy metabolism, revealing unexpectedly widespread engagement of the central brain.
Astrocytes contribute to remote memory formation by modulating hippocampal-cortical communication during learning
How is it that some memories fade in a day while others last forever? The formation of long-lasting (remote) memories depends on the coordinated activity between the hippocampus and frontal cortices, but the timeline of these interactions is debated. Astrocytes, star-shaped glial cells, sense and modify neuronal activity, but their role in remote memory is scarcely explored. We manipulated the activity of hippocampal astrocytes during memory acquisition and discovered it impaired remote, but not recent, memory retrieval. We also revealed a massive recruitment of cortical-projecting hippocampal neurons during memory acquisition, a process that is specifically inhibited by astrocytic manipulation. Finally, we directly inhibited this projection during memory acquisition to prove its necessity for the formation of remote memory. Our findings reveal that the foundation of remote memory can be established during acquisition with projection-specific effect of astrocytes.
Inferring brain-wide interactions using data-constrained recurrent neural network models
Behavior arises from the coordinated activity of numerous distinct brain regions. Modern experimental tools allow access to neural populations brain-wide, yet understanding such large-scale datasets necessitates scalable computational models to extract meaningful features of inter-region communication. In this talk, I will introduce Current-Based Decomposition (CURBD), an approach for inferring multi-region interactions using data-constrained recurrent neural network models. I will first show that CURBD accurately isolates inter-region currents in simulated networks with known dynamics. I will then apply CURBD to understand the brain-wide flow of information leading to behavioral state transitions in larval zebrafish. These examples will establish CURBD as a flexible, scalable framework to infer brain-wide interactions that are inaccessible from experimental measurements alone.
All optical interrogation of developing GABAergic circuits in vivo
The developmental journey of cortical interneurons encounters several activity-dependent milestones. During the early postnatal period in developing mice, GABAergic neurons are transient preferential recipients of thalamic inputs and undergo activity-dependent migration arrest, wiring and programmed cell-death. But cortical GABAergic neurons are also specified by very early developmental programs. For example, the earliest born GABAergic neurons develop into hub cells coordinating spontaneous activity in hippocampal slices. Despite their importance for the emergence of sensory experience, their role in coordinating network dynamics, and the role of activity in their integration into cortical networks, the collective in vivo dynamics of GABAergic neurons during the neonatal postnatal period remain unknown. Here, I will present data related to the coordinated activity between GABAergic cells of the mouse barrel cortex and hippocampus in non-anesthetized pups using the recent development of all optical methods to record and manipulate neuronal activity in vivo. I will show that the functional structure of developing GABAergic circuits is remarkably patterned, with segregated assemblies of prospective parvalbumin neurons and highly connected hub cells, both shaped by sensory-dependent processes.
Decoding of Chemical Information from Populations of Olfactory Neurons
Information is represented in the brain by the coordinated activity of populations of neurons. Recent large-scale neural recording methods in combination with machine learning algorithms are helping understand how sensory processing and cognition emerge from neural population activity. This talk will explore the most popular machine learning methods used to gather meaningful low-dimensional representations from higher-dimensional neural recordings. To illustrate the potential of these approaches, Pedro will present his research in which chemical information is decoded from the olfactory system of the mouse for technological applications. Pedro and co-researchers have successfully extracted odor identity and concentration from olfactory receptor neuron low-dimensional activity trajectories. They have further developed a novel method to identify a shared latent space that allowed decoding of odor information across animals.