Data Efficiency
data efficiency
Comparing supervised learning dynamics: Deep neural networks match human data efficiency but show a generalisation lag
Recent research has seen many behavioral comparisons between humans and deep neural networks (DNNs) in the domain of image classification. Often, comparison studies focus on the end-result of the learning process by measuring and comparing the similarities in the representations of object categories once they have been formed. However, the process of how these representations emerge—that is, the behavioral changes and intermediate stages observed during the acquisition—is less often directly and empirically compared. In this talk, I'm going to report a detailed investigation of the learning dynamics in human observers and various classic and state-of-the-art DNNs. We develop a constrained supervised learning environment to align learning-relevant conditions such as starting point, input modality, available input data and the feedback provided. Across the whole learning process we evaluate and compare how well learned representations can be generalized to previously unseen test data. Comparisons across the entire learning process indicate that DNNs demonstrate a level of data efficiency comparable to human learners, challenging some prevailing assumptions in the field. However, our results also reveal representational differences: while DNNs' learning is characterized by a pronounced generalisation lag, humans appear to immediately acquire generalizable representations without a preliminary phase of learning training set-specific information that is only later transferred to novel data.
What can we further learn from the brain for artificial intelligence?
Deep learning is a prime example of how brain-inspired computing can benefit development of artificial intelligence. But what else can we learn from the brain for bringing AI and robotics to the next level? Energy efficiency and data efficiency are the major features of the brain and human cognition that today’s deep learning has yet to deliver. The brain can be seen as a multi-agent system of heterogeneous learners using different representations and algorithms. The flexible use of reactive, model-free control and model-based “mental simulation” appears to be the basis for computational and data efficiency of the brain. How the brain efficiently acquires and flexibly combines prediction and control modules is a major open problem in neuroscience and its solution should help developments of more flexible and autonomous AI and robotics.