Dissociation
dissociation
Vision for perception versus vision for action: dissociable contributions of visual sensory drives from primary visual cortex and superior colliculus neurons to orienting behaviors
The primary visual cortex (V1) directly projects to the superior colliculus (SC) and is believed to provide sensory drive for eye movements. Consistent with this, a majority of saccade-related SC neurons also exhibit short-latency, stimulus-driven visual responses, which are additionally feature-tuned. However, direct neurophysiological comparisons of the visual response properties of the two anatomically-connected brain areas are surprisingly lacking, especially with respect to active looking behaviors. I will describe a series of experiments characterizing visual response properties in primate V1 and SC neurons, exploring feature dimensions like visual field location, spatial frequency, orientation, contrast, and luminance polarity. The results suggest a substantial, qualitative reformatting of SC visual responses when compared to V1. For example, SC visual response latencies are actively delayed, independent of individual neuron tuning preferences, as a function of increasing spatial frequency, and this phenomenon is directly correlated with saccadic reaction times. Such “coarse-to-fine” rank ordering of SC visual response latencies as a function of spatial frequency is much weaker in V1, suggesting a dissociation of V1 responses from saccade timing. Consistent with this, when we next explored trial-by-trial correlations of individual neurons’ visual response strengths and visual response latencies with saccadic reaction times, we found that most SC neurons exhibited, on a trial-by-trial basis, stronger and earlier visual responses for faster saccadic reaction times. Moreover, these correlations were substantially higher for visual-motor neurons in the intermediate and deep layers than for more superficial visual-only neurons. No such correlations existed systematically in V1. Thus, visual responses in SC and V1 serve fundamentally different roles in active vision: V1 jumpstarts sensing and image analysis, but SC jumpstarts moving. I will finish by demonstrating, using V1 reversible inactivation, that, despite reformatting of signals from V1 to the brainstem, V1 is still a necessary gateway for visually-driven oculomotor responses to occur, even for the most reflexive of eye movement phenomena. This is a fundamental difference from rodent studies demonstrating clear V1-independent processing in afferent visual pathways bypassing the geniculostriate one, and it demonstrates the importance of multi-species comparisons in the study of oculomotor control.
Distinctive features of experiential time: Duration, speed and event density
William James’s use of “time in passing” and “stream of thoughts” may be two sides of the same coin that emerge from the brain segmenting the continuous flow of information into discrete events. Departing from that idea, we investigated how the content of a realistic scene impacts two distinct temporal experiences: the felt duration and the speed of the passage of time. I will present you the results from an online study in which we used a well-established experimental paradigm, the temporal bisection task, which we extended to passage of time judgments. 164 participants classified seconds-long videos of naturalistic scenes as short or long (duration), or slow or fast (passage of time). Videos contained a varying number and type of events. We found that a large number of events lengthened subjective duration and accelerated the felt passage of time. Surprisingly, participants were also faster at estimating their felt passage of time compared to duration. The perception of duration heavily depended on objective duration, whereas the felt passage of time scaled with the rate of change. Altogether, our results support a possible dissociation of the mechanisms underlying the two temporal experiences.
Social and non-social learning: Common, or specialised, mechanisms? (BACN Early Career Prize Lecture 2022)
The last decade has seen a burgeoning interest in studying the neural and computational mechanisms that underpin social learning (learning from others). Many findings support the view that learning from other people is underpinned by the same, ‘domain-general’, mechanisms underpinning learning from non-social stimuli. Despite this, the idea that humans possess social-specific learning mechanisms - adaptive specializations moulded by natural selection to cope with the pressures of group living - persists. In this talk I explore the persistence of this idea. First, I present dissociations between social and non-social learning - patterns of data which are difficult to explain under the domain-general thesis and which therefore support the idea that we have evolved special mechanisms for social learning. Subsequently, I argue that most studies that have dissociated social and non-social learning have employed paradigms in which social information comprises a secondary, additional, source of information that can be used to supplement learning from non-social stimuli. Thus, in most extant paradigms, social and non-social learning differ both in terms of social nature (social or non-social) and status (primary or secondary). I conclude that status is an important driver of apparent differences between social and non-social learning. When we account for differences in status, we see that social and non-social learning share common (dopamine-mediated) mechanisms.
Investigating semantics above and beyond language: a clinical and cognitive neuroscience approach
The ability to build, store, and manipulate semantic representations lies at the core of all our (inter)actions. Combining evidence from cognitive neuroimaging and experimental neuropsychology, I study the neurocognitive correlates of semantic knowledge in relation to other cognitive functions, chiefly language. In this talk, I will start by reviewing neuroimaging findings supporting the idea that semantic representations are encoded in distributed yet specialized cortical areas (1), and rapidly recovered (2) according to the requirement of the task at hand (3). I will then focus on studies conducted in neurodegenerative patients, offering a unique window on the key role played by a structurally and functionally heterogeneous piece of cortex: the anterior temporal lobe (4,5). I will present pathological, neuroimaging, cognitive, and behavioral data illustrating how damages to language-related networks can affect or spare semantic knowledge as well as possible paths to functional compensation (6,7). Time permitting, we will discuss the neurocognitive dissociation between nouns and verbs (8) and how verb production is differentially impacted by specific language impairments (9).
Dissociation between superior colliculus visual response properties and short- latency ocular position drift responses
Clinical neuroscience and the heart-brain axis (BACN Mid-career Prize Lecture 2021)
Cognitive and emotional processes are shaped by the dynamic integration of brain and body. A major channel of interoceptive information comes from the heart, where phasic signals are conveyed to the brain to indicate how fast and strong the heart is beating. This talk will discuss how interoceptive processes operate across conscious and unconscious levels to influence emotion and memory. The interoceptive channel is disrupted in distinct ways in individuals with autism and anxiety. Selective interoceptive disturbance is related to symptomatology including dissociation and the transdiagnostic expression of anxiety. Interoceptive training can reduce anxiety, with enhanced interoceptive precision associated with greater insula connectivity following targeted interoceptive feedback. The discrete cardiac effects on emotion and cognition have broad relevance to clinical neuroscience, with implications for peripheral treatment targets and behavioural interventions.
Dissecting the role of accumbal D1 and D2 medium spiny neurons in information encoding
Nearly all motivated behaviors require the ability to associate outcomes with specific actions and make adaptive decisions about future behavior. The nucleus accumbens (NAc) is integrally involved in these processes. The NAc is a heterogeneous population primarily composed of D1 and D2 medium spiny projection (MSN) neurons that are thought to have opposed roles in behavior, with D1 MSNs promoting reward and D2 MSNs promoting aversion. Here we examined what types of information are encoded by the D1 and D2 MSNs using optogenetics, fiber photometry, and cellular resolution calcium imaging. First, we showed that mice responded for optical self-stimulation of both cell types, suggesting D2-MSN activation is not inherently aversive. Next, we recorded population and single cell activity patterns of D1 and D2 MSNs during reinforcement as well as Pavlovian learning paradigms that allow dissociation of stimulus value, outcome, cue learning, and action. We demonstrated that D1 MSNs respond to the presence and intensity of unconditioned stimuli – regardless of value. Conversely, D2 MSNs responded to the prediction of these outcomes during specific cues. Overall, these results provide foundational evidence for the discrete aspects of information that are encoded within the NAc D1 and D2 MSN populations. These results will significantly enhance our understanding of the involvement of the NAc MSNs in learning and memory as well as how these neurons contribute to the development and maintenance of substance use disorders.
Neurocognitive mechanisms of proactive temporal attention: challenging oscillatory and cortico-centered models
To survive in a rapidly dynamic world, the brain predicts the future state of the world and proactively adjusts perception, attention and action. A key to efficient interaction is to predict and prepare to not only “where” and “what” things will happen, but also to “when”. I will present studies in healthy and neurological populations that investigated the cognitive architecture and neural basis of temporal anticipation. First, influential ‘entrainment’ models suggest that anticipation in rhythmic contexts, e.g. music or biological motion, uniquely relies on alignment of attentional oscillations to external rhythms. Using computational modeling and EEG, I will show that cortical neural patterns previously associated with entrainment in fact overlap with interval timing mechanisms that are used in aperiodic contexts. Second, temporal prediction and attention have commonly been associated with cortical circuits. Studying neurological populations with subcortical degeneration, I will present data that point to a double dissociation between rhythm- and interval-based prediction in the cerebellum and basal ganglia, respectively, and will demonstrate a role for the cerebellum in attentional control of perceptual sensitivity in time. Finally, using EEG in neurodegenerative patients, I will demonstrate that the cerebellum controls temporal adjustment of cortico-striatal neural dynamics, and use computational modeling to identify cerebellar-controlled neural parameters. Altogether, these findings reveal functionally and neural context-specificity and subcortical contributions to temporal anticipation, revising our understanding of dynamic cognition.
The problem of power in single-case neuropsychology
Case-control comparisons are a gold standard method for diagnosing and researching neuropsychological deficits and dissociations at the single-case level. These statistical tests, developed by John Crawford and collaborators, provide quantitative criteria for the classical concepts of deficit, dissociation and double-dissociation. Much attention has been given to the control of Type I (false positive) errors for these tests, but far less to the avoidance of Type II (false negative) errors; that is, to statistical power. I will describe the origins and limits of statistical power for case-control comparisons, showing that there are hard upper limits on power, which have important implications for the design and interpretation of single-case studies. My aim is to stimulate discussion of the inferential status of single-case neuropsychological evidence, particularly with respect to contemporary ideals of open science and study preregistration.
Dissociation between sensory and goal-directed information processing in prefrontal, visual, and parietal cortices in non-human primates
FENS Forum 2024
Dissociations between choice, effort, and profitability in pigeons
FENS Forum 2024
A neurocomputational dissociation of how intrinsic and extrinsic motivation improve memorization performance
FENS Forum 2024
Spatiotemporal dissociation of reward components in the midbrain: An EEG-fMRI 7T study
FENS Forum 2024