← Back

Distractors

Topic spotlight
TopicWorld Wide

distractors

Discover seminars, jobs, and research tagged with distractors across World Wide.
4 curated items4 Seminars
Updated about 2 years ago
4 items · distractors
4 results
SeminarNeuroscience

Prefrontal mechanisms involved in learning distractor-resistant working memory in a dual task

Albert Compte
IDIBAPS
Nov 16, 2023

Working memory (WM) is a cognitive function that allows the short-term maintenance and manipulation of information when no longer accessible to the senses. It relies on temporarily storing stimulus features in the activity of neuronal populations. To preserve these dynamics from distraction it has been proposed that pre and post-distraction population activity decomposes into orthogonal subspaces. If orthogonalization is necessary to avoid WM distraction, it should emerge as performance in the task improves. We sought evidence of WM orthogonalization learning and the underlying mechanisms by analyzing calcium imaging data from the prelimbic (PrL) and anterior cingulate (ACC) cortices of mice as they learned to perform an olfactory dual task. The dual task combines an outer Delayed Paired-Association task (DPA) with an inner Go-NoGo task. We examined how neuronal activity reflected the process of protecting the DPA sample information against Go/NoGo distractors. As mice learned the task, we measured the overlap between the neural activity onto the low-dimensional subspaces that encode sample or distractor odors. Early in the training, pre-distraction activity overlapped with both sample and distractor subspaces. Later in the training, pre-distraction activity was strictly confined to the sample subspace, resulting in a more robust sample code. To gain mechanistic insight into how these low-dimensional WM representations evolve with learning we built a recurrent spiking network model of excitatory and inhibitory neurons with low-rank connections. The model links learning to (1) the orthogonalization of sample and distractor WM subspaces and (2) the orthogonalization of each subspace with irrelevant inputs. We validated (1) by measuring the angular distance between the sample and distractor subspaces through learning in the data. Prediction (2) was validated in PrL through the photoinhibition of ACC to PrL inputs, which induced early-training neural dynamics in well-trained animals. In the model, learning drives the network from a double-well attractor toward a more continuous ring attractor regime. We tested signatures for this dynamical evolution in the experimental data by estimating the energy landscape of the dynamics on a one-dimensional ring. In sum, our study defines network dynamics underlying the process of learning to shield WM representations from distracting tasks.

SeminarPsychology

Statistical Summary Representations in Identity Learning: Exemplar-Independent Incidental Recognition

Yaren Koca
University of Regina
Aug 25, 2021

The literature suggests that ensemble coding, the ability to represent the gist of sets, may be an underlying mechanism for becoming familiar with newly encountered faces. This phenomenon was investigated by introducing a new training paradigm that involves incidental learning of target identities interspersed among distractors. The effectiveness of this training paradigm was explored in Study 1, which revealed that unfamiliar observers who learned the faces incidentally performed just as well as the observers who were instructed to learn the faces, and the intervening distractors did not disrupt familiarization. Using the same training paradigm, ensemble coding was investigated as an underlying mechanism for face familiarization in Study 2 by measuring familiarity with the targets at different time points using average images created either by seen or unseen encounters of the target. The results revealed that observers whose familiarity was tested using seen averages outperformed the observers who were tested using unseen averages, however, this discrepancy diminished over time. In other words, successful recognition of the target faces became less reliant on the previously encountered exemplars over time, suggesting an exemplar-independent representation that is likely achieved through ensemble coding. Taken together, the results from the current experiment provide direct evidence for ensemble coding as a viable underlying mechanism for face familiarization, that faces that are interspersed among distractors can be learned incidentally.

SeminarNeuroscienceRecording

Analogical Reasoning and Executive Functions - A Life Span Approach

Jean-Pierre Thibaut
University of Burgundy
Jul 8, 2020

From a developmental standpoint, it has been argued that two major complementary factors contribute to the development of analogy comprehension: world knowledge and executive functions. Here I will provide evidence in support of the second view. Beyond paradigms that manipulate task difficulty (e.g., number and types of distractors and semantic distance between domains) we will provide eye-tracking data that describes differences in the way children and adults compare the base and target domains in analogy problems. We will follow the same approach with ageing people. This latter population provides a unique opportunity to disentangle the contribution of knowledge and executive processes in analogy making since knowledge is (more than) preserved and executive control is decreasing. Using this paradigm, I will show the extent to which world knowledge (assessed through vocabulary) compensates for decreasing executive control in older populations. Our eye-tracking data suggests that, to a certain extent, differences between younger and older adults are analogous to the differences between younger adults and children in the way they compare the base and the target domains in analogy problems.