Dysfunction
dysfunction
Organization of thalamic networks and mechanisms of dysfunction in schizophrenia and autism
Thalamic networks, at the core of thalamocortical and thalamosubcortical communications, underlie processes of perception, attention, memory, emotions, and the sleep-wake cycle, and are disrupted in mental disorders, including schizophrenia and autism. However, the underlying mechanisms of pathology are unknown. I will present novel evidence on key organizational principles, structural, and molecular features of thalamocortical networks, as well as critical thalamic pathway interactions that are likely affected in disorders. This data can facilitate modeling typical and abnormal brain function and can provide the foundation to understand heterogeneous disruption of these networks in sleep disorders, attention deficits, and cognitive and affective impairments in schizophrenia and autism, with important implications for the design of targeted therapeutic interventions
Expanding mechanisms and therapeutic targets for neurodegenerative disease
A hallmark pathological feature of the neurodegenerative diseases amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) is the depletion of RNA-binding protein TDP-43 from the nucleus of neurons in the brain and spinal cord. A major function of TDP-43 is as a repressor of cryptic exon inclusion during RNA splicing. By re-analyzing RNA-sequencing datasets from human FTD/ALS brains, we discovered dozens of novel cryptic splicing events in important neuronal genes. Single nucleotide polymorphisms in UNC13A are among the strongest hits associated with FTD and ALS in human genome-wide association studies, but how those variants increase risk for disease is unknown. We discovered that TDP-43 represses a cryptic exon-splicing event in UNC13A. Loss of TDP-43 from the nucleus in human brain, neuronal cell lines and motor neurons derived from induced pluripotent stem cells resulted in the inclusion of a cryptic exon in UNC13A mRNA and reduced UNC13A protein expression. The top variants associated with FTD or ALS risk in humans are located in the intron harboring the cryptic exon, and we show that they increase UNC13A cryptic exon splicing in the face of TDP-43 dysfunction. Together, our data provide a direct functional link between one of the strongest genetic risk factors for FTD and ALS (UNC13A genetic variants), and loss of TDP-43 function. Recent analyses have revealed even further changes in TDP-43 target genes, including widespread changes in alternative polyadenylation, impacting expression of disease-relevant genes (e.g., ELP1, NEFL, and TMEM106B) and providing evidence that alternative polyadenylation is a new facet of TDP-43 pathology.
Impact of High Fat Diet on Central Cardiac Circuits: When The Wanderer is Lost
Cardiac vagal motor drive originates in the brainstem's cardiac vagal motor neurons (CVNs). Despite well-established cardioinhibitory functions in health, our understanding of CVNs in disease is limited. There is a clear connection of cardiovascular regulation with metabolic and energy expenditure systems. Using high fat diet as a model, this talk will explore how metabolic dysfunction impacts the regulation of cardiac tissue through robust inhibition of CVNs. Specifically, it will present an often overlooked modality of inhibition, tonic gamma-aminobuytric acid (GABA) A-type neurotransmission using an array of techniques from single cell patch clamp electrophysiology to transgenic in vivo whole animal physiology. It also will highlight a unique interaction with the delta isoform of protein kinase C to facilitate GABA A-type receptor expression.
Metabolic-functional coupling of parvalbmunin-positive GABAergic interneurons in the injured and epileptic brain
Parvalbumin-positive GABAergic interneurons (PV-INs) provide inhibitory control of excitatory neuron activity, coordinate circuit function, and regulate behavior and cognition. PV-INs are uniquely susceptible to loss and dysfunction in traumatic brain injury (TBI) and epilepsy but the cause of this susceptibility is unknown. One hypothesis is that PV-INs use specialized metabolic systems to support their high-frequency action potential firing and that metabolic stress disrupts these systems, leading to their dysfunction and loss. Metabolism-based therapies can restore PV-IN function after injury in preclinical TBI models. Based on these findings, we hypothesize that (1) PV-INs are highly metabolically specialized, (2) these specializations are lost after TBI, and (3) restoring PV-IN metabolic specializations can improve PV-IN function as well as TBI-related outcomes. Using novel single-cell approaches, we can now quantify cell-type-specific metabolism in complex tissues to determine whether PV-IN metabolic dysfunction contributes to the pathophysiology of TBI.
Blood-brain barrier dysfunction in epilepsy: Time for translation
The neurovascular unit (NVU) consists of cerebral blood vessels, neurons, astrocytes, microglia, and pericytes. It plays a vital role in regulating blood flow and ensuring the proper functioning of neural circuits. Among other, this is made possible by the blood-brain barrier (BBB), which acts as both a physical and functional barrier. Previous studies have shown that dysfunction of the BBB is common in most neurological disorders and is associated with neural dysfunction. Our studies have demonstrated that BBB dysfunction results in the transformation of astrocytes through transforming growth factor beta (TGFβ) signaling. This leads to activation of the innate neuroinflammatory system, changes in the extracellular matrix, and pathological plasticity. These changes ultimately result in dysfunction of the cortical circuit, lower seizure threshold, and spontaneous seizures. Blocking TGFβ signaling and its associated pro-inflammatory pathway can prevent this cascade of events, reduces neuroinflammation, repairs BBB dysfunction, and prevents post-injury epilepsy, as shown in experimental rodents. To further understand and assess BBB integrity in human epilepsy, we developed a novel imaging technique that quantitatively measures BBB permeability. Our findings have confirmed that BBB dysfunction is common in patients with drug-resistant epilepsy and can assist in identifying the ictal-onset zone prior to surgery. Current clinical studies are ongoing to explore the potential of targeting BBB dysfunction as a novel treatment approach and investigate its role in drug resistance, the spread of seizures, and comorbidities associated with epilepsy.
Dysfunctional translation in disease
In the fifth of this year’s Brain Prize webinars, Emily Osterweil (Harvard Medical School, USA), Gary Bassell (Emory University, USA) and Giovanna Mallucci (Altos Labs, UK) will present their work on dysfunctional translation in disease. Each speaker will present for 25 minutes, and the webinar will conclude with an open discussion. The webinar will be moderated by two of the winners of the 2023 Brain Prize, Michael Greenberg and Erin Schuman.
Connectome-based models of neurodegenerative disease
Neurodegenerative diseases involve accumulation of aberrant proteins in the brain, leading to brain damage and progressive cognitive and behavioral dysfunction. Many gaps exist in our understanding of how these diseases initiate and how they progress through the brain. However, evidence has accumulated supporting the hypothesis that aberrant proteins can be transported using the brain’s intrinsic network architecture — in other words, using the brain’s natural communication pathways. This theory forms the basis of connectome-based computational models, which combine real human data and theoretical disease mechanisms to simulate the progression of neurodegenerative diseases through the brain. In this talk, I will first review work leading to the development of connectome-based models, and work from my lab and others that have used these models to test hypothetical modes of disease progression. Second, I will discuss the future and potential of connectome-based models to achieve clinically useful individual-level predictions, as well as to generate novel biological insights into disease progression. Along the way, I will highlight recent work by my lab and others that is already moving the needle toward these lofty goals.
Metabolic Remodelling in the Developing Forebrain in Health and Disease
Little is known about the critical metabolic changes that neural cells have to undergo during development and how temporary shifts in this program can influence brain circuitries and behavior. Motivated by the identification of autism-associated mutations in SLC7A5, a transporter for metabolically essential large neutral amino acids (LNAAs), we utilized metabolomic profiling to investigate the metabolic states of the cerebral cortex across various developmental stages. Our findings reveal significant metabolic restructuring occurring in the forebrain throughout development, with specific groups of metabolites exhibiting stage-specific changes. Through the manipulation of Slc7a5 expression in neural cells, we discovered an interconnected relationship between the metabolism of LNAAs and lipids within the cortex. Neuronal deletion of Slc7a5 influences the postnatal metabolic state, resulting in a shift in lipid metabolism and a cell-type-specific modification in neuronal activity patterns. This ultimately gives rise to enduring circuit dysfunction.
Deleterious, beneficial or both –retrotransposon expression in brain function and dysfunction
Mechanisms Underlying the Persistence of Cancer-Related Fatigue
Cancer-related fatigue is a prominent and debilitating side effect of cancer and its treatment. It can develop prior to diagnosis, generally peaks during cancer treatment, and can persist long after treatment completion. Its mechanisms are multifactorial, and its expression is highly variable. Unfortunately, treatment options are limited. Our research uses syngeneic murine models of cancer and cisplatin-based chemotherapy to better understand these mechanisms. Our data indicate that both peripherally and centrally processes may contribute to the developmental of fatigue. These processes include metabolic alterations, mitochondrial dysfunction, pre-cachexia, and inflammation. However, our data has revealed that behavioral fatigue can persist even after the toxicity associated with cancer and its treatment recover. For example, running during cancer treatment attenuates kidney toxicity while also delaying recovery from fatigue-like behavior. Additionally, administration of anesthetics known to disrupt memory consolidation at the time treatment can promote recovery, and treatment-related cues can re-instate fatigue after recovery. Cancer-related fatigue can also promote habitual behavioral patterns, as observed using a devaluation task. We interpret this data to suggest that limit metabolic resources during cancer promote the utilization of habit-based behavioral strategies that serve to maintain fatigue behavior into survivorship. This line of work is exciting as it points us toward novel interventional targets for the treatment of persistent cancer-related fatigue.
Circuit mechanisms of attention dysfunction in Scn8a+/- mice: implications for epilepsy and neurodevelopmental disorders
Diagnosing dementia using Fastball neurocognitive assessment
Fastball is a novel, fast, passive biomarker of cognitive function, that uses cheap, scalable electroencephalography (EEG) technology. It is sensitive to early dementia; language, education, effort and anxiety independent and can be used in any setting including patients’ homes. It can capture a range of cognitive functions including semantic memory, recognition memory, attention and visual function. We have shown that Fastball is sensitive to cognitive dysfunction in Alzheimer’s disease and Mild Cognitive Impairment, with data collected in patients’ homes using low-cost portable EEG. We are now preparing for significant scale-up and the validation of Fastball in primary and secondary care.
Establishment and aging of the neuronal DNA methylation landscape in the hippocampus
The hippocampus is a brain region with key roles in memory formation, cognitive flexibility and emotional control. Yet hippocampal function is impaired severely during aging and in neurodegenerative diseases, and impairments in hippocampal function underlie age-related cognitive decline. Accumulating evidence suggests that the deterioration of the neuron-specific epigenetic landscape during aging contributes to their progressive, age-related dysfunction. For instance, we have recently shown that aging is associated with pronounced alterations of neuronal DNA methylation patterns in the hippocampus. Because neurons are generated mostly during development with limited replacement in the adult brain, they are particularly long-lived cells and have to maintain their cell-type specific gene expression programs life-long in order to preserve brain function. Understanding the epigenetic mechanisms that underlie the establishment and long-term maintenance of neuron-specific gene expression programs, will help us to comprehend the sources and consequences of their age-related deterioration. In this talk, I will present our recent work that investigated the role of DNA methylation in the establishment of neuronal gene expression programs and neuronal function, using adult neurogenesis in the hippocampus as a model. I will then describe the effects of aging on the DNA methylation landscape in the hippocampus and discuss the malleability of the aging neuronal methylome to lifestyle and environmental stimulation.
Obesity and Brain – Bidirectional Influences
The regulation of body weight relies on homeostatic mechanisms that use a combination of internal signals and external cues to initiate and terminate food intake. Homeostasis depends on intricate communication between the body and the hypothalamus involving numerous neural and hormonal signals. However, there is growing evidence that higher-level cognitive function may also influence energy balance. For instance, research has shown that BMI is consistently linked to various brain, cognitive, and personality measures, implicating executive, reward, and attentional systems. Moreover, the rise in obesity rates over the past half-century is attributed to the affordability and widespread availability of highly processed foods, a phenomenon that contradicts the idea that food intake is solely regulated by homeostasis. I will suggest that prefrontal systems involved in value computation and motivation act to limit food overconsumption when food is scarce or expensive, but promote over-eating when food is abundant, an optimum strategy from an economic standpoint. I will review the genetic and neuroscience literature on the CNS control of body weight. I will present recent studies supporting a role of prefrontal systems in weight control. I will also present contradictory evidence showing that frontal executive and cognitive findings in obesity may be a consequence not a cause of increased hunger. Finally I will review the effects of obesity on brain anatomy and function. Chronic adiposity leads to cerebrovascular dysfunction, cortical thinning, and cognitive impairment. As the most common preventable risk factor for dementia, obesity poses a significant threat to brain health. I will conclude by reviewing evidence for treatment of obesity in adults to prevent brain disease.
From cells to systems: multiscale studies of the epileptic brain
It is increasingly recognized that epilepsy affects human brain organization across multiple scales, ranging from cellular alterations in specific regions towards macroscale network imbalances. My talk will overview an emerging paradigm that integrates cellular, neuroimaging, and network modelling approaches to faithful characterize the extent of structural and functional alterations in the common epilepsies. I will also discuss how multiscale framework can help to derive clinically useful biomarkers of dysfunction, and how these methods may guide surgical planning and prognostics.
Integration of 3D human stem cell models derived from post-mortem tissue and statistical genomics to guide schizophrenia therapeutic development
Schizophrenia is a neuropsychiatric disorder characterized by positive symptoms (such as hallucinations and delusions), negative symptoms (such as avolition and withdrawal) and cognitive dysfunction1. Schizophrenia is highly heritable, and genetic studies are playing a pivotal role in identifying potential biomarkers and causal disease mechanisms with the hope of informing new treatments. Genome-wide association studies (GWAS) identified nearly 270 loci with a high statistical association with schizophrenia risk; however each locus confers only a small increase in risk therefore it is difficult to translate these findings into understanding disease biology that can lead to treatments. Induced pluripotent stem cell (iPSC) models are a tractable system to translate genetic findings and interrogate mechanisms of pathogenesis. Mounting research with patient-derived iPSCs has proposed several neurodevelopmental pathways altered in SCZ, such as neural progenitor cell (NPC) proliferation, imbalanced differentiation of excitatory and inhibitory cortical neurons. However, it is unclear what exactly these iPS models recapitulate, how potential perturbations of early brain development translates into illness in adults and how iPS models that represent fetal stages can be utilized to further drug development efforts to treat adult illness. I will present the largest transcriptome analysis of post-mortem caudate nucleus in schizophrenia where we discovered that decreased presynaptic DRD2 autoregulation is the causal dopamine risk factor for schizophrenia (Benjamin et al, Nature Neuroscience 2022 https://doi.org/10.1038/s41593-022-01182-7). We developed stem cell models from a subset of the postmortem cohort to better understand the molecular underpinnings of human psychiatric disorders (Sawada et al, Stem Cell Research 2020). We established a method for the differentiation of iPS cells into ventral forebrain organoids and performed single cell RNAseq and cellular phenotyping. To our knowledge, this is the first study to evaluate iPSC models of SZ from the same individuals with postmortem tissue. Our study establishes that striatal neurons in the patients with SCZ carry abnormalities that originated during early brain development. Differentiation of inhibitory neurons is accelerated whereas excitatory neuronal development is delayed, implicating an excitation and inhibition (E-I) imbalance during early brain development in SCZ. We found a significant overlap of genes upregulated in the inhibitory neurons in SCZ organoids with upregulated genes in postmortem caudate tissues from patients with SCZ compared with control individuals, including the donors of our iPS cell cohort. Altogether, we demonstrate that ventral forebrain organoids derived from postmortem tissue of individuals with schizophrenia recapitulate perturbed striatal gene expression dynamics of the donors’ brains (Sawada et al, biorxiv 2022 https://doi.org/10.1101/2022.05.26.493589).
Development of Interictal Networks: Implications for Epilepsy Progression and Cognition
Epilepsy is a common and disabling neurologic condition affecting adults and children that results from complex dysfunction of neural networks and is ineffectively treated with current therapies in up to one third of patients. This dysfunction can have especially severe consequences in pediatric age group, where neurodevelopment may be irreversibly affected. Furthermore, although seizures are the most obvious manifestation of epilepsy, the cognitive and psychiatric dysfunction that often coexists in patients with this disorder has the potential to be equally disabling. Given these challenges, her research program aims to better understand how epileptic activity disrupts the proper development and function of neural networks, with the overall goal of identifying novel biomarkers and systems level treatments for epileptic disorders and their comorbidities, especially those affecting children.
Identifying central mechanisms of glucocorticoid circadian rhythm dysfunction in breast cancer
The circadian release of endogenous glucocorticoids is essential in preparing and synchronizing the body’s daily physiological needs. Disruption in the rhythmic activity of glucocorticoids has been observed in individuals with a variety of cancer types, and blunting of this rhythm has been shown to predict cancer mortality and declines in quality of life. This suggests that a disrupted glucocorticoid rhythm is potentially a shared phenotype across cancers. However, where this phenomenon is driven by the cancer itself, and the causal mechanisms that link glucocorticoid rhythm dysfunction and cancer outcomes remain preliminary at best. The regulation of daily glucocorticoid activity has been well-characterized and is maintained, in part, by the coordinated response of the hypothalamic-pituitary-adrenal (HPA) axis, consisting of the suprachiasmatic nucleus (SCN) and corticotropin-releasing hormone-expressing neurons of the paraventricular nucleus of the hypothalamus (PVNCRH). Consequently, we set out to examine if cancer-induced glucocorticoid dysfunction is regulated by disruptions within these hypothalamic nuclei. In comparison to their tumor-free baseline, mammary tumor-bearing mice exhibited a blunting of glucocorticoid rhythms across multiple timepoints throughout the day, as measured by the overall levels and the slope of fecal corticosterone rhythms, during tumor progression. We further examined how peripheral tumors shape hypothalamic activity within the brain. Serial two-photon tomography for whole-brain cFos imaging suggests a disrupted activation of the PVN in mice with tumors. Additionally, we found GFP labeled CRH+ neurons within the PVN after injection of pseudorabies virus expressing GFP into the tumor, pointing to the PVN as a primary target disrupted by mammary tumors. Preliminary in vivo fiber photometry data show that PVNCRH neurons exhibit enhanced calcium activity during tumor progression, as compared to baseline (no tumor) activity. Taken together, this suggests that there may be an overactive HPA response during tumor progression, which in turn, may result in a subsequent negative feedback on glucocorticoid rhythms. Current studies are examining whether tumor progression modulates SCN calcium activity, how the transcriptional profile of PVNCRH neurons is changed, and test if manipulation of the neurocircuitry surrounding glucocorticoid rhythmicity alters tumor characteristics.
The peripheral airways in Asthma: significance, assessment, and targeted treatment
The peripheral airways are technically challenging to assess and have been overlooked in the assessment of chronic respiratory diseases such as Asthma, in both the clinical and research space. Evidence of the importance of the small airways in Asthma is building, and small airways dysfunction is implicated in poor Asthma control, airway hyperresponsiveness, and exacerbation risk. The aim of this research was to complete comprehensive global, regional, and spatial assessments of airway function and ventilation in Asthma using physiological and MRI techniques. Specific ventilation imaging (SVI) and Phase resolved functional lung imaging (PREFUL) formed the spatial assessments. SVI uses oxygen as a contrast agent and looks at rate of change in signal to assess ventilation heterogeneity, PREFUL is a completely contrast free technique that uses Fourier decomposition to determine fractional ventilation.
Redox and mitochondrial dysregulation in epilepsy
Epileptic seizures render the brain uniquely dependent on energy producing pathways. Studies in our laboratory have been focused on the role of redox processes and mitochondria in the context of abnormal neuronal excitability associated with epilepsy. We have shown that that status epilepticus (SE) alters mitochondrial and cellular redox status, energetics and function and conversely, that reactive oxygen species and resultant dysfunction can lead to chronic epilepsy. Oxidative stress and neuroinflammatory pathways have considerable crosstalk and targeting redox processes has recently been shown to control neuroinflammation and excitability. Understanding the role of metabolic and redox processes can enable the development of novel therapeutics to control epilepsy and/or its comorbidities.
Don't forget the gametes: Neurodevelopmental pathogenesis starts in the sperm and egg
Proper development of the nervous system depends not only on the inherited DNA sequence, but also on proper regulation of gene expression, as controlled in part by epigenetic mechanisms present in the parental gametes. In this presentation an internationally recognized research advocate explains why researchers concerned about the origins of increasingly prevalent neurodevelopmental disorders such as autism and attention deficit hyperactivity disorder should look beyond genetics in probing the origins of dysregulated transcription of brain-related genes. The culprit for a subset of cases, she contends, may lie in the exposure history of the parents, and thus their germ cells. To illustrate how environmentally informed, nongenetic dysfunction may occur, she focuses on the example of parents' histories of exposure to common agents of modern inhalational anesthesia, a highly toxic exposure that in mammalian models has been seen to induce heritable neurodevelopmental abnormality in offspring born of exposed germline.
Neural Circuit Dysfunction along the Gut/Brain Axis in zebrafish models of Autism Spectrum Disorder
The Synaptome Architecture of the Brain: Lifespan, disease, evolution and behavior
The overall aim of my research is to understand how the organisation of the synapse, with particular reference to the postsynaptic proteome (PSP) of excitatory synapses in the brain, informs the fundamental mechanisms of learning, memory and behaviour and how these mechanisms go awry in neurological dysfunction. The PSP indeed bears a remarkable burden of disease, with components being disrupted in disorders (synaptopathies) including schizophrenia, depression, autism and intellectual disability. Our work has been fundamental in revealing and then characterising the unprecedented complexity (>1000 highly conserved proteins) of the PSP in terms of the subsynaptic architecture of postsynaptic proteins such as PSD95 and how these proteins assemble into complexes and supercomplexes in different neurons and regions of the brain. Characterising the PSPs in multiple species, including human and mouse, has revealed differences in key sets of functionally important proteins, correlates with brain imaging and connectome data, and a differential distribution of disease-relevant proteins and pathways. Such studies have also provided important insight into synapse evolution, establishing that vertebrate behavioural complexity is a product of the evolutionary expansion in synapse proteomes that occurred ~500 million years ago. My lab has identified many mutations causing cognitive impairments in mice before they were found to cause human disorders. Our proteomic studies revealed that >130 brain diseases are caused by mutations affecting postsynaptic proteins. We uncovered mechanisms that explain the polygenic basis and age of onset of schizophrenia, with postsynaptic proteins, including PSD95 supercomplexes, carrying much of the polygenic burden. We discovered the “Genetic Lifespan Calendar”, a genomic programme controlling when genes are regulated. We showed that this could explain how schizophrenia susceptibility genes are timed to exert their effects in young adults. The Genes to Cognition programme is the largest genetic study so far undertaken into the synaptic molecular mechanisms underlying behaviour and physiology. We made important conceptual advances that inform how the repertoire of both innate and learned behaviours is built from unique combinations of postsynaptic proteins that either amplify or attenuate the behavioural response. This constitutes a key advance in understanding how the brain decodes information inherent in patterns of nerve impulses, and provides insight into why the PSP has evolved to be so complex, and consequently why the phenotypes of synaptopathies are so diverse. Our most recent work has opened a new phase, and scale, in understanding synapses with the first synaptome maps of the brain. We have developed next-generation methods (SYNMAP) that enable single-synapse resolution molecular mapping across the whole mouse brain and extensive regions of the human brain, revealing the molecular and morphological features of a billion synapses. This has already uncovered unprecedented spatiotemporal synapse diversity organised into an architecture that correlates with the structural and functional connectomes, and shown how mutations that cause cognitive disorders reorganise these synaptome maps; for example, by detecting vulnerable synapse subtypes and synapse loss in Alzheimer’s disease. This innovative synaptome mapping technology has huge potential to help characterise how the brain changes during normal development, including in specific cell types, and with degeneration, facilitating novel pathways to diagnosis and therapy.
Elucidating the mechanism underlying Stress and Caffeine-induced motor dysfunction using a mouse model of Episodic Ataxia Type 2
Episodic Ataxia type 2 (EA2), caused by mutations in the CACNA1A gene, results in a loss-of-function of the P/Q type calcium channel, which leads to baseline ataxia, and attacks of dyskinesia, that can last a few hours to a few days. Attacks are brought on by consumption of caffeine, alcohol, and physical or emotional stress. Interestingly, caffeine and stress are common triggers among other episodic channelopathies, as well as causing tremor or shaking in otherwise healthy adults. The mechanism underlying stress and caffeine induced motor impairment remains poorly understood. Utilizing behavior, and in vivo and in vitro electrophysiology in the tottering mouse, a well characterized mouse model of EA2, or WT mice, we first sought to elucidate the mechanism underlying stress-induced motor impairment. We found stress induces attacks in EA2 though the activation of cerebellar alpha 1 adrenergic receptors by norepinephrine (NE) through casein kinase 2 (CK2) dependent phosphorylation. This decreases SK2 channel activity, causing increased Purkinje cell irregularity and motor impairment. Knocking down or blocking CK2 with an FDA approved drug CX-4945 prevented PC irregularity and stress-induced attacks. We next hypothesized caffeine, which has been shown to increase NE levels, could induce attacks through the same alpha 1 adrenergic mechanism in EA2. We found caffeine increases PC irregularity and induces attacks through the same CK2 pathway. Block of alpha 1 adrenergic receptors, however, failed to prevent caffeine-induced attacks. Caffeine instead induces attacks through the block of cerebellar A1 adenosine receptors. This increases the release of glutamate, which interacts with mGluR1 receptors on PC, resulting in erratic firing and motor attacks. Finally, we show a novel direct interaction between mGluR1 and CK2, and inhibition of mGluR1 prior to initiation of attack, prevents the caffeine-induced increase in phosphorylation. These data elucidate the mechanism underlying stress and caffeine-induced motor impairment. Furthermore, given the success of CX-4945 to prevent stress and caffeine induced attacks, it establishes ground-work for the development of therapeutics for the treatment of caffeine and stress induced attacks in EA2 patients and possibly other episodic channelopathies.
Mutation targeted gene therapy approaches to alter rod degeneration and retain cones
My research uses electrophysiological techniques to evaluate normal retinal function, dysfunction caused by blinding retinal diseases and the restoration of function using a variety of therapeutic strategies. We can use our understanding or normal retinal function and disease-related changes to construct optimal therapeutic strategies and evaluate how they ameliorate the effects of disease. Retinitis pigmentosa (RP) is a family of blinding eye diseases caused by photoreceptor degeneration. The absence of the cells that for this primary signal leads to blindness. My interest in RP involves the evaluation of therapies to restore vision: replacing degenerated photoreceptors either with: (1) new stem or other embryonic cells, manipulated to become photoreceptors or (2) prosthetics devices that replace the photoreceptor signal with an electronic signal to light. Glaucoma is caused by increased intraocular pressure and leads to ganglion cell death, which eliminates the link between the retinal output and central visual processing. We are parsing out of the effects of increased intraocular pressure and aging on ganglion cells. Congenital Stationary Night Blindness (CSNB) is a family of diseases in which signaling is eliminated between rod photoreceptors and their postsynaptic targets, rod bipolar cells. This deafferents the retinal circuit that is responsible for vision under dim lighting. My interest in CSNB involves understanding the basic interplay between excitation and inhibition in the retinal circuit and its normal development. Because of the targeted nature of this disease, we are hopeful that a gene therapy approach can be developed to restore night vision. My work utilizes rodent disease models whose mutations mimic those found in human patients. While molecular manipulation of rodents is a fairly common approach, we have recently developed a mutant NIH miniature swine model of a common form of autosomal dominant RP (Pro23His rhodopsin mutation) in collaboration with the National Swine Resource Research Center at University of Missouri. More genetically modified mini-swine models are in the pipeline to examine other retinal diseases.
Network science and network medicine: New strategies for understanding and treating the biological basis of mental ill-health
The last twenty years have witnessed extraordinarily rapid progress in basic neuroscience, including breakthrough technologies such as optogenetics, and the collection of unprecedented amounts of neuroimaging, genetic and other data relevant to neuroscience and mental health. However, the translation of this progress into improved understanding of brain function and dysfunction has been comparatively slow. As a result, the development of therapeutics for mental health has stagnated too. One central challenge has been to extract meaning from these large, complex, multivariate datasets, which requires a shift towards systems-level mathematical and computational approaches. A second challenge has been reconciling different scales of investigation, from genes and molecules to cells, circuits, tissue, whole-brain, and ultimately behaviour. In this talk I will describe several strands of work using mathematical, statistical, and bioinformatic methods to bridge these gaps. Topics will include: using artificial neural networks to link the organization of large-scale brain connectivity to cognitive function; using multivariate statistical methods to link disease-related changes in brain networks to the underlying biological processes; and using network-based approaches to move from genetic insights towards drug discovey. Finally, I will discuss how simple organisms such as C. elegans can serve to inspire, test, and validate new methods and insights in networks neuroscience.
What is Cognitive Neuropsychology Good For? An Unauthorized Biography
Abstract: There is no doubt that the study of brain damaged individuals has contributed greatly to our understanding of the mind/brain. Within this broad approach, cognitive neuropsychology accentuates the cognitive dimension: it investigates the structure and organization of perceptual, motor, cognitive, and language systems – prerequisites for understanding the functional organization of the brain – through the analysis of their dysfunction following brain damage. Significant insights have come specifically from this paradigm. But progress has been slow and enthusiasm for this approach has waned somewhat in recent years, and the use of existing findings to constrain new theories has also waned. What explains the current diminished status of cognitive neuropsychology? One reason may be failure to calibrate expectations about the effective contribution of different subfields of the study of the mind/brain as these are determined by their natural peculiarities – such factors as the types of available observations and their complexity, opportunity of access to such observations, the possibility of controlled experimentation, and the like. Here, I also explore the merits and limitations of cognitive neuropsychology, with particular focus on the role of intellectual, pragmatic, and societal factors that determine scientific practice within the broader domains of cognitive science/neuroscience. I conclude on an optimistic note about the continuing unique importance of cognitive neuropsychology: although limited to the study of experiments of nature, it offers a privileged window into significant aspects of the mind/brain that are not easily accessible through other approaches. Biography: Alfonso Caramazza's research has focussed extensively on how words and their meanings are represented in the brain. His early pioneering studies helped to reformulate our thinking about Broca's aphasia (not limited to production) and formalised the logic of patient-based neuropsychology. More recently he has been instrumental in reconsidering popular claims about embodied cognition.
Life and death of transient neurons in the development of functional and dysfunctional cortical circuits
Effects of pathological Tau on hippocampal neuronal activity and spatial memory in ageing mice
The gradual accumulation of hyperphosphorylated forms of the Tau protein (pTau) in the human brain correlate with cognitive dysfunction and neurodegeneration. I will present our recent findings on the consequences of human pTau aggregation in the hippocampal formation of a mouse tauopathy model. We show that pTau preferentially accumulates in deep-layer pyramidal neurons, leading to their neurodegeneration. In aged but not younger mice, pTau spreads to oligodendrocytes. During ‘goal-directed’ navigation, we detect fewer high-firing pyramidal cells, but coupling to network oscillations is maintained in the remaining cells. The firing patterns of individually recorded and labelled pyramidal and GABAergic neurons are similar in transgenic and non-transgenic mice, as are network oscillations, suggesting intact neuronal coordination. This is consistent with a lack of pTau in subcortical brain areas that provide rhythmic input to the cortex. Spatial memory tests reveal a reduction in short-term familiarity of spatial cues but unimpaired spatial working and reference memory. These results suggest that preserved subcortical network mechanisms compensate for the widespread pTau aggregation in the hippocampal formation. I will also briefly discuss ideas on the subcortical origins of spatial memory and the concept of the cortex as a monitoring device.
Primary Motor Cortex Circuitry in a Mouse Model of Parkinson’s Disease
The primary motor cortex (M1) is a major output center for movement execution and motor learning, and its dysfunction contributes to the pathophysiology of Parkinson’s disease (PD). While human studies have indicated that a loss of midbrain dopamine neurons alters M1 activation, the mechanisms underlying this phenomenon remain unclear. Using a mouse model of PD, we uncovered several shifts within M1 circuitry following dopamine depletion, including impaired excitation by thalamocortical afferents and altered excitability. Our findings add to the growing body of literature highlighting M1 as a major contributor in PD, and provide targeted neural substrates for possible therapeutic interventions.
Reward system function and dysfunction in Autism Spectrum Disorders
Synaptic molecules: Linking synaptic dysfunction to neuropsychiatric disorders
JAK/STAT regulation of the transcriptomic response during epileptogenesis
Temporal lobe epilepsy (TLE) is a progressive disorder mediated by pathological changes in molecular cascades and neural circuit remodeling in the hippocampus resulting in increased susceptibility to spontaneous seizures and cognitive dysfunction. Targeting these cascades could prevent or reverse symptom progression and has the potential to provide viable disease-modifying treatments that could reduce the portion of TLE patients (>30%) not responsive to current medical therapies. Changes in GABA(A) receptor subunit expression have been implicated in the pathogenesis of TLE, and the Janus Kinase/Signal Transducer and Activator of Transcription (JAK/STAT) pathway has been shown to be a key regulator of these changes. The JAK/STAT pathway is known to be involved in inflammation and immunity, and to be critical for neuronal functions such as synaptic plasticity and synaptogenesis. Our laboratories have shown that a STAT3 inhibitor, WP1066, could greatly reduce the number of spontaneous recurrent seizures (SRS) in an animal model of pilocarpine-induced status epilepticus (SE). This suggests promise for JAK/STAT inhibitors as disease-modifying therapies, however, the potential adverse effects of systemic or global CNS pathway inhibition limits their use. Development of more targeted therapeutics will require a detailed understanding of JAK/STAT-induced epileptogenic responses in different cell types. To this end, we have developed a new transgenic line where dimer-dependent STAT3 signaling is functionally knocked out (fKO) by tamoxifen-induced Cre expression specifically in forebrain excitatory neurons (eNs) via the Calcium/Calmodulin Dependent Protein Kinase II alpha (CamK2a) promoter. Most recently, we have demonstrated that STAT3 KO in excitatory neurons (eNSTAT3fKO) markedly reduces the progression of epilepsy (SRS frequency) in the intrahippocampal kainate (IHKA) TLE model and protects mice from kainic acid (KA)-induced memory deficits as assessed by Contextual Fear Conditioning. Using data from bulk hippocampal tissue RNA-sequencing, we further discovered a transcriptomic signature for the IHKA model that contains a substantial number of genes, particularly in synaptic plasticity and inflammatory gene networks, that are down-regulated after KA-induced SE in wild-type but not eNSTAT3fKO mice. Finally, we will review data from other models of brain injury that lead to epilepsy, such as TBI, that implicate activation of the JAK/STAT pathway that may contribute to epilepsy development.
Improving the identification of cardiometabolic risk in early psychosis
People with chronic schizophrenia die on average 10-15 years sooner than the general population, mostly due to physical comorbidity. While sociodemographic, chronic lifestyle and iatrogenic factors are important contributors to this comorbidity, a growing body of research is beginning to suggest that early signs of cardiometabolic dysfunction may be present from the onset of psychosis in some young adults, and may even be detectable before the onset of psychosis. Given that primary prevention is the best means to prevent the onset of more chronic and severe cardiometabolic phenotypes such as CVD, there is clear need to be able to identify young adults with psychosis who are most at risk of future adverse cardiometabolic outcomes, such that the most intensive interventions can be directed in an informed way to attenuate the risk or even prevent those adverse outcomes from occurring.In this talk, Ben will first outline some recent advances in our understanding of the association between cardiometabolic and schizophrenia spectrum disorders. He will then introduce the field of cardiometabolic risk prediction, and highlight how existing tools developed for older general population adults are unlikely to be suitable for young people with psychosis. Finally, he will discuss the current state of play and the future of the Psychosis Metabolic Risk Calculator (PsyMetRiC), a novel clinically useful cardiometabolic risk prediction algorithm tailored for young people with psychosis, which has been developed and externally validated using data from three psychosis early intervention services in the UK.
Dysfunctional synaptic vesicle recycling – links to epilepsy
Accurate and synchronous neurotransmitter release is essential for brain communication and occurs when neurotransmitter-containing synaptic vesicles (SVs) fuse to release their content in response to neuronal activity. Neurotransmission is sustained by the process of SV recycling, which generates SVs locally at the presynapse. Until relatively recently it was believed that most mutations in genes that were essential for SV recycling would be incompatible with life, due to this fundamental role. However, this is not the case, with mutations in essential genes for SV fusion, retrieval and recycling identified in individuals with epilepsy. This seminar will cover our laboratory’s progress in determining how genetic mutations in people with epilepsy translate into presynaptic dysfunction and ultimately into seizure activity. The principal focus of these studies will be in vitro investigations of, 1) the biological role of these gene products and 2) how their dysfunction impacts SV recycling, using live fluorescence imaging of genetically-encoded reporters. The gene products to be discussed in more detail will be the SV protein SV2A, the protein kinase CDKL5 and the translation repressor FMRP.
Dysfunction of neurons and circuits in Alzheimer’s disease
Migraine: a disorder of excitatory-inhibitory balance in multiple brain networks? Insights from genetic mouse models of the disease
Migraine is much more than an episodic headache. It is a complex brain disorder, characterized by a global dysfunction in multisensory information processing and integration. In a third of patients, the headache is preceded by transient sensory disturbances (aura), whose neurophysiological correlate is cortical spreading depression (CSD). The molecular, cellular and circuit mechanisms of the primary brain dysfunctions that underlie migraine onset, susceptibility to CSD and altered sensory processing remain largely unknown and are major open issues in the neurobiology of migraine. Genetic mouse models of a rare monogenic form of migraine with aura provide a unique experimental system to tackle these key unanswered questions. I will describe the functional alterations we have uncovered in the cerebral cortex of genetic mouse models and discuss the insights into the cellular and circuit mechanisms of migraine obtained from these findings.
Evidence for the role of glymphatic dysfunction in the development of Alzheimer’s disease
Glymphatic perivascular exchange is supported by the astroglial water channel aquaporin-4 (AQP4), which localizes to perivascular astrocytic endfeet surrounding the cerebral vasculature. In aging mice, impairment of glymphatic function is associated with reduced perivascular AQP4 localization, yet whether these changes contribute to the development of neurodegenerative disease, such as Alzheimer’s disease (AD), remains unknown. Using post mortem human tissue, we evaluated perivascular AQP4 localization in the frontal cortical gray matter, white matter, and hippocampus of cognitively normal subjects and those with AD. Loss of perivascular and increasing cellular localization of AQP4 in the frontal gray matter was specifically associated with AD status, amyloid β (Aβ) and tau pathology, and cognitive decline in the early stages of disease. Using AAV-PHP.B to drive expression on non-perivascular AQP4 in wild type and Tg2576 (APPSwe, mouse model of Aβ deposition) mice, increased cellular AQP4 localization did not slow glymphatic function or change Aβ deposition. Using the Snta1 knockout line (which lacks perivascular AQP4 localization), we observed that loss AQP4 from perivascular endfeet slowed glymphatic function in wild type mice and accelerated Aβ plaque deposition in Tg2576 mice. These findings demonstrate that loss of perivascular AQP4 localization, and not increased cellular AQP4 localization, slows glymphatic function and promotes the development of AD pathology. To evaluate whether naturally occurring variation in the human AQP4 gene, or the alpha syntrophin (SNTA1), dystrobrevin (DTNA) or dystroglycan (DAG1) genes (whose products maintain perivascular AQP4 localization) confer risk for or protection from AD pathology or clinical progression, we evaluated 56 tag single nucleotide polymorphisms (SNPs) across these genes for association with CSF AD biomarkers, MRI measures of cortical and hippocampal atrophy, and longitudinal cognitive decline in the Alzheimer’s Disease Neuroimaging Initiative I (ADNI I) cohort. We identify 25 different significant associations between AQP4, SNTA1, DTNA, and DAG1 tag SNPs and phenotypic measures of AD pathology and progression. These findings provide complimentary human genetic evidence for the contribution of perivascular glymphatic dysfunction to the development of AD in human populations.
Dancing to a Different Tune: TANGO Gives Hope for Dravet Syndrome
The long-term goal of our research is to understand the mechanisms of SUDEP, defined as Sudden, Unexpected, witnessed or unwitnessed, nontraumatic and non-drowning Death in patients with EPilepsy, excluding cases of documented status epilepticus. The majority of SUDEP patients die during sleep. SUDEP is the most devastating consequence of epilepsy, yet little is understood about its causes and no biomarkers exist to identify at risk patients. While SUDEP accounts for 7.5-20% of all epilepsy deaths, SUDEP risk in the genetic epilepsies varies with affected genes. Patients with ion channel gene variants have the highest SUDEP risk. Indirect evidence variably links SUDEP to seizure-induced apnea, pulmonary edema, dysregulation of cerebral circulation, autonomic dysfunction, and cardiac arrhythmias. Arrhythmias may be primary or secondary to hormonal or metabolic changes, or autonomic discharges. When SUDEP is compared to Sudden Cardiac Death secondary to Long QT Syndrome, especially to LQT3 linked to variants in the voltage-gated sodium channel (VGSC) gene SCN5A, there are parallels in the circumstances of death. To gain insight into SUDEP mechanisms, our approach has focused on channelopathies with high SUDEP incidence. One such disorder is Dravet syndrome (DS), a devastating form of developmental and epileptic encephalopathy (DEE) characterized by multiple pharmacoresistant seizure types, intellectual disability, ataxia, and increased mortality. While all patients with epilepsy are at risk for SUDEP, DS patients may have the highest risk, up to 20%, with a mean age at SUDEP of 4.6 years. Over 80% of DS is caused by de novo heterozygous loss-of-function (LOF) variants in SCN1A, encoding the VGSC Nav1.1 subunit, resulting in haploinsufficiency. A smaller cohort of patients with DS or a more severe DEE have inherited, homozygous LOF variants in SCN1B, encoding the VGSC 1/1B non-pore-forming subunits. A related DEE, Early Infantile EE (EIEE) type 13, is linked to de novo heterozygous gain-of-function variants in SCN8A, encoding the VGSC Nav1.6. VGSCs underlie the rising phase and propagation of action potentials in neurons and cardiac myocytes. SCN1A, SCN8A, and SCN1B are expressed in both the heart and brain of humans and mice. Because of this, we proposed that cardiac arrhythmias contribute to the mechanism of SUDEP in DEE. We have taken a novel approach to the development of therapeutics for DS in collaboration with Stoke Therapeutics. We employed Targeted Augmentation of Nuclear Gene Output (TANGO) technology, which modulates naturally occurring, non-productive splicing events to increase target gene and protein expression and ameliorate disease phenotype in a mouse model. We identified antisense oligonucleotides (ASOs) that specifically increase the expression of productive Scn1a transcript in human and mouse cell lines, as well as in mouse brain. We showed that a single intracerebroventricular dose of a lead ASO at postnatal day 2 or 14 reduced the incidence of electrographic seizures and SUDEP in the F1:129S-Scn1a+/- x C57BL/6J mouse model of DS. Increased expression of productive Scn1a transcript and NaV1.1 protein were confirmed in brains of treated mice. Our results suggest that TANGO may provide a unique, gene-specific approach for the treatment of DS.
Synaptic health in Parkinson's Disease
Parkinson's disease (PD) is the second most common neurodegenerative disorder, affecting 1% of over 65's; there is currently no effective treatment. Dopaminergic neuronal loss is hallmark in PD and yet despite decades of intensive research there is still no known therapeutic which will completely halt the disorder. As a result, identification of interventive therapies to reverse or prevent PD are essential. Using genetically faithful models (induced pluripotent stem cells and knock-in mice) of familial late onset PD (LRRK2 G2019S and GBA N370S) we have contributed to the literature that neuronal dysfunction precedes degeneration. Specifically, using whole cell patch clamp electrophysiology, biochemical, behavioural and molecular biological techniques, we have begun to investigate the fundamental processes that make neurons specialised i.e., synaptic function and neurotransmission. We illustrate those alterations to spontaneous neurotransmitter release, neuronal firing, and short-term plasticity as well as Ca2+ and energy dyshomeostasis, are some of the earliest observable pathological dysfunctions and are likely precursors to late-stage degeneration. These pathologies represent targets which can be manipulated to address causation, rather than the symptoms of the PD, and represent a marker that, if measurable in patients, could form the basis of early PD detection and intervention.
Neuro-Immune Coupling: How the Immune System Sculpts Brain Circuitry
In this lecture, Dr Stevens will discuss recent work that implicates brain immune cells, called microglia, in sculpting of synaptic connections during development and their relevance to autism, schizophrenia and other brain disorders. Her recent work revealed a key role for microglia and a group of immune related molecules called complement in normal developmental synaptic pruning, a normal process required to establish precise brain wiring. Emerging evidence suggests aberrant regulation of this pruning pathway may contribute to synaptic and cognitive dysfunction in a host of brain disorders, including schizophrenia. Recent research has revealed that a person’s risk of schizophrenia is increased if they inherit specific variants in complement C4, gene plays a well-known role in the immune system but also helps sculpt developing synapses in the mouse visual system (Sekar et al., 2016). Together these findings may help explain known features of schizophrenia, including reduced numbers of synapses in key cortical regions and an adolescent age of onset that corresponds with developmentally timed waves of synaptic pruning in these regions. Stevens will discuss this and ongoing work to understand the mechanisms by which complement and microglia prune specific synapses in the brain. A deeper understanding of how these immune mechanisms mediate synaptic pruning may provide novel insight into how to protect synapses in autism and other brain disorders, including Alzheimer’s and Huntington’s Disease.
Roles of microglia in the pathogenesis of neurodegeneration
Microglia are implicated in a variety of functions in the central nervous system, ranging from shaping neural circuits during early brain development, to surveying the brain parenchyma, and providing trophic support to neurons across the entire lifespan. In neurodegeneration, microglia have been considered for long time mere bystanders, accompanying and worsening neuronal damage. However, recent evidence indicates that microglia can causally contribute to neurodegenerative diseases, and that their dysfunction can even be at the origin of the pathology. In fact, the broad range of physiological roles microglia play in the healthy brain suggest that faulty microglia can initiate neurodegeneration through several possible mechanisms. In particular, in this seminar, we will discuss how dysfunctional microglia can affect synaptic function leading to pathological synapse loss, thus putting microglia center stage in the pathogenesis of brain disorders.
Neuronal and Vascular Dysfunction in Optic Neuropathies: New Insights from Live Imaging Studies
Toxic effect of pathogenic tau on the nucleus
The nuclear envelope is a lipid bilayer that encases the genome and provides a physical boundary between the cytoplasm and the nucleoplasm. While the nucleus is typically depicted as a sphere encircled by a smooth surface of nuclear envelope, the smooth exterior can be interrupted by tubular invaginations of the nuclear envelope into the deep nuclear interior. Such structures are termed the "nucleoplasmic reticulum." Increased frequency of nuclear envelope invagination occurs in disease states including various cancers, viral infections, and laminopathies, a group of heterogeneous disorders that arise due to mutations in the gene encoding lamin A. A significant increase in the frequency of nuclear envelope invaginations in the human Alzheimer's disease brain has recently been reported. Nuclear envelope invaginations are caused by pathogenic tau, one of the two major pathological hallmarks of Alzheimer's disease. Pathogenic tau-induced dysfunction of the lamin nucleoskeleton drives nuclear envelope invagination and consequent accumulation of polyadenylated RNA within invaginations, both of which drive neuronal death. Our ongoing studies suggest that maintaining proper cytoskeletal, nucleoskeletal, and genomic architecture are critical for survival and function of adult neurons.
Fragility of the human connectome across the lifespan
The human brain network architecture can reveal crucial aspects of brain function and dysfunction. The topology of this network (known as the connectome) is shaped by a trade-off between wiring cost and network efficiency, and it has highly connected hub regions playing a prominent role in many brain disorders. By studying a landscape of plausible brain networks that preserve the wiring cost, fragile and resilient hubs can be identified. In this webinar, Dr Leonardo Gollo and Dr James Pang from Monash University will discuss this approach across the lifespan and some of its implications for neurodevelopmental and neurodegenerative diseases. Dr Leonardo Gollo is a Senior Research Fellow at the Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University. He holds an ARC Future Fellowship and his research interests include brain modelling, systems neuroscience, and connectomics. Dr James Pang is a Research Fellow at the Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University. His research interests are on combining neuroimaging and biophysical modelling to better understand the mechanisms of brain function in health and disease.
Covid And Cognition
ONS figures suggest that at least 10% of individuals suffering COVID -19 Infection continue to experience several weeks after testing positive, and other studies report the proportions as even higher (e.g. Logue et al., 2021). One of the most prevalent reported symptoms among these “Long Covid” sufferers is cognitive dysfunction (Davis et al., 2020). However, to date the cognitive sequelae of COVID -19 are little understood. There are a number of reasons why COVID -19 infection might be associated with cognitive impairment and mental illness (e.g. Bougakov et al., 2020). In particular, increasing evidence indicates inflammation (e.g. Huang et al., 2020) and dysfunctional clotting (e.g. Taquet et al., 2021) as issues of major concern, both of which have been previously linked to a range of cognitive deficits (e.g. Vintimilla et al., 2019; Cumming et al., 2013). Indeed, evidence is beginning to emerge that cognitive issues may be widespread in the post-infection period, particularly among hospitalised and ventilated patients (e.g. Hampshire et al., 2020; Alemanno et al,. 2020). Here I shall present “Hot off the [SPSS]Press” results from a study on memory and cognition following COVID infection in a non-hospitalized cohort.
Magnetic Resonance Measures of Brain Blood Vessels, Metabolic Activity, and Pathology in Multiple Sclerosis
The normally functioning blood-brain barrier (BBB) regulates the transfer of material between blood and brain. BBB dysfunction has long been recognized in multiple sclerosis (MS), and there is considerable interest in quantifying functional aspects of brain blood vessels and their role in disease progression. Parenchymal water content and its association with volume regulation is important for proper brain function, and is one of the key roles of the BBB. There is convincing evidence that the astrocyte is critical in establishing and maintaining a functional BBB and providing metabolic support to neurons. Increasing evidence suggests that functional interactions between endothelia, pericytes, astrocytes, and neurons, collectively known as the neurovascular unit, contribute to brain water regulation, capillary blood volume and flow, BBB permeability, and are responsive to metabolic demands. Increasing evidence suggests altered metabolism in MS brain which may contribute to reduced neuro-repair and increased neurodegeneration. Metabolically relevant biomarkers may provide sensitive readouts of brain tissue at risk of degeneration, and magnetic resonance offers substantial promise in this regard. Dynamic contrast enhanced MRI combined with appropriate pharmacokinetic modeling allows quantification of distinct features of BBB including permeabilities to contrast agent and water, with rate constants that differ by six orders of magnitude. Mapping of these rate constants provides unique biological aspects of brain vasculature relevant to MS.
Peril, Prudence and Planning as Risk, Avoidance and Worry
Risk occupies a central role in both the theory and practice of decision-making. Although it is deeply implicated in many conditions involving dysfunctional behavior and thought, modern theoretical approaches to understanding and mitigating risk in either one-shot or sequential settings, which are derived largely from finance and economics, have yet to permeate fully the fields of neural reinforcement learning and computational psychiatry. I will discuss the use of dynamic and static versions of one prominent approach, namely conditional value-at-risk, to examine both the nature of risk avoidant choices, encompassing such things as justified gambler's fallacies, and the optimal planning that can lead to consideration of such choices, with implications for offline, ruminative, thinking.
New Strategies and Approaches to Tackle and Understand Neurological Disorder
Broadly, the Mauro Costa-Mattioli laboratory (The MCM Lab) encompasses two complementary lines of research. The first one, more traditional but very important, aims at unraveling the molecular mechanisms underlying memory formation (e.g., using state-of-the-art molecular and cell-specific genetic approaches). Learning and memory disorders can strike the brain during development (e.g., Autism Spectrum Disorders and Down Syndrome), as well as during adulthood (e.g., Alzheimer’s disease). We are interested in understanding the specific circuits and molecular pathways that are primarily targeted in these disorders and how they can be restored. To tackle these questions, we use a multidisciplinary, convergent and cross-species approach that combines mouse and fly genetics, molecular biology, electrophysiology, stem cell biology, optogenetics and behavioral techniques. The second line of research, more recent and relatively unexplored, is focused on understanding how gut microbes control CNS driven-behavior and brain function. Our recent discoveries, that microbes in the gut could modulate brain function and behavior in a very powerful way, have added a whole new dimension to the classic view of how complex behaviors are controlled. The unexpected findings have opened new avenues of study for us and are currently driving my lab to answer a host of new and very interesting questions: - What are the gut microbes (and metabolites) that regulate CNS-driven behaviors? Would it be possible to develop an unbiased screening method to identify specific microbes that regulate different behaviors? - If this is the case, can we identify how members of the gut microbiome (and their metabolites) mechanistically influence brain function? - What is the communication channel between the gut microbiota and the brain? Do different gut microbes use different ways to interact with the brain? - Could disruption of the gut microbial ecology cause neurodevelopmental dysfunction? If so, what is the impact of disruption in young and adult animals? - More importantly, could specific restoration of selected bacterial strains (new generation probiotics) represent a novel therapeutic approach for the targeted treatment of neurodevelopmental disorders? - Finally, can we develop microbiota-directed therapeutic foods to repair brain dysfunction in a variety of neurological disorders?
Cellular/circuit dysfunction across development in a model of Dravet syndrome
Dravet syndrome (DS) is a neurodevelopmental disorder caused by heterozygous loss-of-function of the gene SCN1A encoding the voltage-gated sodium channel subunit Nav1.1, and is defined by treatment-resistant epilepsy, intellectual impairment, and sudden death. However, disease mechanisms remain unclear, as previously-identified deficiency in action potential generation of Nav1.1-expressing parvalbumin-positive fast-spiking GABAergic interneurons (PV-INs) in DS (Scn1a+/-) mice normalizes during development. We used a novel approach that facilitated the assessment of PV-IN function at both early (post-natal day (P) 16-21) and late (P35-56) time points in the same mice. We confirmed that PV-IN spike generation was impaired at P16-21 in all mice (those deceased from SUDEP by P35 and those surviving to P35-56). However, unitary synaptic transmission assessed in PV-IN:principal cell paired recordings was severely dysfunctional selectively in mice recorded at P16-21 that did not survive to P35. Spike generation in surviving mice had normalized by P35-56; yet we again identified abnormalities in synaptic transmission in surviving mice. We propose that early dysfunction of PV-IN spike propagation drives epilepsy severity and risk of sudden death, while persistent dysfunction of spike propagation contributes to chronic DS pathology.
Dorothy J Killam Lecture: Cell Type Classification and Circuit Mapping in the Mouse Brain
To understand the function of the brain and how its dysfunction leads to brain diseases, it is essential to have a deep understanding of the cell type composition of the brain, how the cell types are connected with each other and what their roles are in circuit function. At the Allen Institute, we have built multiple platforms, including single-cell transcriptomics, single and multi-patching electrophysiology, 3D reconstruction of neuronal morphology, high throughput brain-wide connectivity mapping, and large-scale neuronal activity imaging, to characterize the transcriptomic, physiological, morphological, and connectional properties of different types of neurons in a standardized way, towards a taxonomy of cell types and a description of their wiring diagram for the mouse brain, with a focus on the visual cortico-thalamic system. Building such knowledge base lays the foundation towards the understanding of the computational mechanisms of brain circuit function.
Playing fast and loose with glutamate builds healthy circuits in the developing cortex
The construction of cortical circuits requires the precise formation of connections between excitatory and inhibitory neurons during early development. Multiple factors, including neurotransmitters, neuronal activity, and neuronal-glial interactions, shape how these critical circuits form. Disruptions of these early processes can disrupt circuit formation, leading to epilepsy and other neurodevelopmental disorders. Here, I will describe our work into understanding how prolonged post-natal astrocyte development in the cortex creates a permissive window for glutamate signaling that provides tonic activation of developing interneurons through Grin2D NMDA receptors. Experimental disruption of this pathway results in hyperexcitable cortical circuits and human mutations in the Grin2D gene, as well as other related molecules that regulate early life glutamate signaling, are associated with devastating epileptic encephalopathies. We will explore fundamental mechanisms linking early life glutamate signaling and later circuit hyperexcitability, with an emphasis on potential therapeutic interventions aimed at reducing epilepsy and other neurological dysfunction.
What is hippocampal sclerosis? A cell-type specific perspective
Temporal lobe epilepsy is considered a neuronal microcircuit dysfunction, yet mechanisms are poorly understood. Here we will discuss recent data on cell-type specific alterations of hippocampal microcircuit function in experimental models of temporal lobe epilepsy. We will highlight the importance of leveraging on cellular heterogeneity to better understand the complexities accompanying hippocampal sclerosis.
Mapping early brain network changes in neurodegenerative and cerebrovascular disorders: a longitudinal perspective
The spatial patterning of each neurodegenerative disease relates closely to a distinct structural and functional network in the human brain. This talk will mainly describe how brain network-sensitive neuroimaging methods such as resting-state fMRI and diffusion MRI can shed light on brain network dysfunctions associated with pathology and cognitive decline from preclinical to clinical dementia. I will first present our findings from two independent datasets on how amyloid and cerebrovascular pathology influence brain functional networks cross-sectionally and longitudinally in individuals with mild cognitive impairment and dementia. Evidence on longitudinal functional network organizational changes in healthy older adults and the influence of APOE genotype will be presented. In the second part, I will describe our work on how different pathology influences brain structural network and white matter microstructure. I will also touch on some new data on how brain network integrity contributes to behavior and disease progression using multivariate or machine learning approaches. These findings underscore the importance of studying selective brain network vulnerability instead of individual region and longitudinal design. Further developed with machine learning approaches, multimodal network-specific imaging signatures will help reveal disease mechanisms and facilitate early detection, prognosis and treatment search of neuropsychiatric disorders.
Phospholipid regulation in cognitive impairment and vascular dementia
An imbalance in lipid metabolism in neurodegeneration is still poorly understood. Phospholipids (PLs) have multifactorial participation in vascular dementia as Alzheimer, post-stroke dementia, CADASIL between others. Which include the hyperactivation of phospholipases, mitochondrial stress, peroxisomal dysfunction and irregular fatty acid composition triggering proinflammation in a very early stage of cognitive impairment. The reestablishment of physiological conditions of cholesterol, sphingolipids, phospholipids and others are an interesting therapeutic target to reduce the progression of AD. We propose the positive effect of BACE1 silencing produces a balance of phospholipid profile in desaturase enzymes-depending mode to reduce the inflammation response, and recover the cognitive function in an Alzheimer´s animal and brain stroke models. Pointing out there is a great need for new well-designed research focused in preventing phospholipids imbalance, and their consequent energy metabolism impairment, pro-inflammation and enzymatic over-processing, which would help to prevent unhealthy aging and AD progression.
Neuron-glia interactions in synapse degeneration in Alzheimer's disease
Tara Spires-Jones’ research focuses on the mechanisms and reversibility of neurodegeneration in Alzheimer’s disease, other degenerative brain diseases, and ageing. The objective of her research group is to understand why synapses and neurons become dysfunctional and die in these diseases in order to develop effective therapeutic strategies. Her work has shown that soluble forms of the pathological proteins amyloid beta and tau contribute to synapse degeneration, and that lowering levels of these proteins can prevent and reverse phenotypes in model systems. Further, she has pioneered high-resolution imaging techniques in human post-mortem brain and found evidence that these proteins accumulate in synapses in human disease.
In vivo modelling of human cortical circuit wiring and dysfunction
Unique Molecular Regulation of Prefrontal Cortex Confers Vulnerability to Cognitive Disorders
The Arnsten lab studies molecular influences on the higher cognitive circuits of the dorsolateral prefrontal cortex (dlPFC), in order to understand mechanisms affecting working memory at the cellular and behavioral levels, with the overarching aim of identifying the actions that render the dlPFC so vulnerable in cognitive disorders. Her lab has shown that the dlPFC has unique neurotransmission and neuromodulation compared to the classic actions found in the primary visual cortex, including mechanisms to rapidly weaken PFC connections during uncontrollable stress. Reduced regulation of these stress pathways due to genetic or environmental insults contributes to dlPFC dysfunction in cognitive disorders, including calcium dysregulation and tau phosphorylation in the aging association cortex. Understanding these unique mechanisms has led to the development of a new treatment, IntunivTM, for a variety of PFC disorders.
Uncovering mechanisms of cerebellar dysfunction in complex developmental brain disorders
The developing visual brain – answers and questions
We will start our talk with a short video of our research, illustrating methods (some old and new) and findings that have provided our current understanding of how visual capabilities develop in infancy and early childhood. However, our research poses some outstanding questions. We will briefly discuss three issues, which are linked by a common focus on the development of visual attentional processing: (1) How do recurrent cortical loops contribute to development? Cortical selectivity (e.g., to orientation, motion, and binocular disparity) develops in the early months of life. However, these systems are not purely feedforward but depend on parallel pathways, with recurrent feedback loops playing a critical role. The development of diverse networks, particularly for motion processing, may explain changes in dynamic responses and resolve developmental data obtained with different methodologies. One possible role for these loops is in top-down attentional control of visual processing. (2) Why do hyperopic infants become strabismic (cross-eyes)? Binocular interaction is a particularly sensitive area of development. Standard clinical accounts suppose that long-sighted (hyperopic) refractive errors require accommodative effort, putting stress on the accommodation-convergence link that leads to its breakdown and strabismus. Our large-scale population screening studies of 9-month infants question this: hyperopic infants are at higher risk of strabismus and impaired vision (amblyopia and impaired attention) but these hyperopic infants often under- rather than over-accommodate. This poor accommodation may reflect poor early attention processing, possibly a ‘soft sign’ of subtle cerebral dysfunction. (3) What do many neurodevelopmental disorders have in common? Despite similar cognitive demands, global motion perception is much more impaired than global static form across diverse neurodevelopmental disorders including Down and Williams Syndromes, Fragile-X, Autism, children with premature birth and infants with perinatal brain injury. These deficits in motion processing are associated with deficits in other dorsal stream functions such as visuo-motor co-ordination and attentional control, a cluster we have called ‘dorsal stream vulnerability’. However, our neuroimaging measures related to motion coherence in typically developing children suggest that the critical areas for individual differences in global motion sensitivity are not early motion-processing areas such as V5/MT, but downstream parietal and frontal areas for decision processes on motion signals. Although these brain networks may also underlie attentional and visuo-motor deficits , we still do not know when and how these deficits differ across different disorders and between individual children. Answering these questions provide necessary steps, not only increasing our scientific understanding of human visual brain development, but also in designing appropriate interventions to help each child achieve their full potential.
Machine Learning Approaches Reveal Prominent Behavioral Alterations and Cognitive Dysfunction in a Humanized Alzheimer Model
COSYNE 2023
A direct link between Prefrontal E/I imbalance and executive dysfunction in schizophrenia
COSYNE 2025
Adiponectin deficiency exacerbates cerebrovascular dysfunction in 5xFAD mouse model of Alzheimer’s disease
FENS Forum 2024
Astrocytes phagocytic sexual dimorphism fosters major depressive disorder through MEGF10 dysfunction
FENS Forum 2024
Autoantibody-induced synaptic and extrasynaptic dysfunction of LGI1 and Kv1 channels as a cause of LGI1 encephalitis
FENS Forum 2024
β-Endorphin mitigates UVB-induced epidermal barrier dysfunction through control of inflammation-driven mTORC1 pathways
FENS Forum 2024
Behavioral regression in Syn II KO mice: From latent synaptopathy to overt dysfunctions in multisensory social processing
FENS Forum 2024
Changes in striatal spiny projection neurons’ properties and circuitry in a mouse model of autism spectrum disorder with cholinergic interneuron dysfunction
FENS Forum 2024
Chronic demyelinating pathology induces lysosomal exhaustion and dysfunction of lipid recycling pathways in microglia
FENS Forum 2024
Contribution of anterodorsal thalamic neurons to orientation coding and their dysfunction in a novel virus-based tauopathy mouse model
FENS Forum 2024
Contribution of cGAS-P2X2 crosstalk on synaptic failure and mitochondrial dysfunction induced by β-amyloid oligomers
FENS Forum 2024
Dopamine neuron dysfunction and loss in the PrknR275W mouse model of juvenile parkinsonism
FENS Forum 2024
Dysfunction of octopamine-mediated calcium signalling and glucose metabolism in the aging Drosophila brain
FENS Forum 2024
Is dysfunctional neuronal differentiation the link between diet and neurodegeneration?
FENS Forum 2024
Dysregulation of astrocytic activity mediates glymphatic dysfunction and cognitive impairment in Alzheimer's disease
FENS Forum 2024
Emotional and blood-brain barrier alterations precede cognitive dysfunction in a mouse model of Alzheimer's disease
FENS Forum 2024
Evaluation of synaptic connectivity and dysfunction in aging mouse brains using an RNAscope multiomic spatial imaging assay (MSIA) that detects RNA, proteins, and protein interactions
FENS Forum 2024
Executive dysfunction and abnormal hippocampal-prefrontal intrinsic and synaptic excitability in the 3xTg mouse model for Alzheimer’s disease
FENS Forum 2024
Exploring the impact of transglutaminase 2 in Parkinson’s disease: Mitochondrial dysfunction and proteomic pathways
FENS Forum 2024
From systems biology to drug targets: ATP synthase subunit upregulation causes mitochondrial dysfunction in Shank3Δ4-22 mouse model of autism
FENS Forum 2024
Identifying candidate genes associated with hippocampal dysfunction in a hemiparkinsonian rat model by transcriptomic profiling
FENS Forum 2024
Improving glutamate metabolism to simultaneously address energetic failure and cell dysfunctions in Alzheimer’s disease
FENS Forum 2024
Insights into CTBP1 dysfunction in HADDTS: Linking the metabolic and neurodevelopmental dysfunction
FENS Forum 2024
The interplay between oxidative stress, mitochondrial dysfunction, and alteration of parvalbumin interneurons in postmortem brain of Alzheimer’s disease and mild cognitive impairment patients
FENS Forum 2024
Investigating the molecular mechanisms involved in early events of cellular dysfunction in Alzheimer's disease
FENS Forum 2024
Investigating the role of Rab proteins in mitochondrial dysfunction related to Parkinson’s disease
FENS Forum 2024
Investigating synaptic dysfunction caused by AMPA receptor trafficking to lysosomes in familial Alzheimer’s disease iPSC-derived neurons
FENS Forum 2024
Investigation of blood-brain barrier transporter dysfunction in sporadic Alzheimer's disease: Insights from patient iPSC-derived models
FENS Forum 2024
Korean red ginseng marc-derived gintonin alleviates Alzheimer’s disease-related cognitive dysfunction by stimulating NRF2 pathway and inhibiting p38/NF-κB/STAT3 signaling pathways through LPA receptor 1
FENS Forum 2024
Mechanisms of synaptic dysfunction in the Angelman Syndrome
FENS Forum 2024
Memory-enhancing activities of the aqueous extract of Sclerocarya birrea, Nauclea latifolia, and Piper longum mixture on diabetes-induced cognitive dysfunction
FENS Forum 2024
Microglia mitochondrial complex I deficiency during development induces glial dysfunction and early lethality
FENS Forum 2024
Microglia rescue neurons from aggregate-induced neuronal dysfunction and death through tunneling nanotubes
FENS Forum 2024
Mitochondrial dysfunction and Purkinje cell loss in Christianson syndrome
FENS Forum 2024
Mitochondrial dysfunction underlies impaired neurovascular coupling following traumatic brain injury
FENS Forum 2024
A new model mice with cholinergic dysfunction and amyloid pathogenesis for Alzheimer’s disease
FENS Forum 2024
Neural origins of forelimb motor dysfunctions in a mouse model of Parkinson's disease
FENS Forum 2024
Neuronal network dysfunction and neurodegeneration mediated by TLR7/8-activated microglia depend on the immunological context
FENS Forum 2024
Neurotoxin mediated neuronal dysfunction regulated by lysosomal function
FENS Forum 2024
A novel perspective: Early-life stress at the origin of AD-related mitochondrial dysfunctions
FENS Forum 2024