Empirical Data
empirical data
The Brain Prize winners' webinar
This webinar brings together three leaders in theoretical and computational neuroscience—Larry Abbott, Haim Sompolinsky, and Terry Sejnowski—to discuss how neural circuits generate fundamental aspects of the mind. Abbott illustrates mechanisms in electric fish that differentiate self-generated electric signals from external sensory cues, showing how predictive plasticity and two-stage signal cancellation mediate a sense of self. Sompolinsky explores attractor networks, revealing how discrete and continuous attractors can stabilize activity patterns, enable working memory, and incorporate chaotic dynamics underlying spontaneous behaviors. He further highlights the concept of object manifolds in high-level sensory representations and raises open questions on integrating connectomics with theoretical frameworks. Sejnowski bridges these motifs with modern artificial intelligence, demonstrating how large-scale neural networks capture language structures through distributed representations that parallel biological coding. Together, their presentations emphasize the synergy between empirical data, computational modeling, and connectomics in explaining the neural basis of cognition—offering insights into perception, memory, language, and the emergence of mind-like processes.
Diffuse coupling in the brain - A temperature dial for computation
The neurobiological mechanisms of arousal and anesthesia remain poorly understood. Recent evidence highlights the key role of interactions between the cerebral cortex and the diffusely projecting matrix thalamic nuclei. Here, we interrogate these processes in a whole-brain corticothalamic neural mass model endowed with targeted and diffusely projecting thalamocortical nuclei inferred from empirical data. This model captures key features seen in propofol anesthesia, including diminished network integration, lowered state diversity, impaired susceptibility to perturbation, and decreased corticocortical coherence. Collectively, these signatures reflect a suppression of information transfer across the cerebral cortex. We recover these signatures of conscious arousal by selectively stimulating the matrix thalamus, recapitulating empirical results in macaque, as well as wake-like information processing states that reflect the thalamic modulation of largescale cortical attractor dynamics. Our results highlight the role of matrix thalamocortical projections in shaping many features of complex cortical dynamics to facilitate the unique communication states supporting conscious awareness.
A new experimental paradigm to study analogy transfer
Analogical reasoning is one of the most complex cognitive functions in humans that allows abstract thinking, high-level reasoning, and learning. Based on analogical reasoning, one can extract an abstract and general concept (i.e., an analogy schema) from a familiar situation and apply it to a new context or domain (i.e., analogy transfer). These processes allow us to solve problems we never encountered before and generate new ideas. However, the place of analogy transfer in problem solving mechanisms is unclear. This presentation will describe several experiments with three main findings. First, we show how analogy transfer facilitates problem-solving, replicating existing empirical data largely based on the radiation/fortress problems with four new riddles. Second, we propose a new experimental task that allows us to quantify analogy transfer. Finally, using science network methodology, we show how restructuring the mental representation of a problem can predict successful solving of an analogous problem. These results shed new light on the cognitive mechanism underlying solution transfer by analogy and provide a new tool to quantify individual abilities.
NMC4 Panel: The Contribution of Models vs Data
Theory-driven probabilistic modeling of language use: a case study on quantifiers, logic and typicality
Theoretical linguistics postulates abstract structures that successfully explain key aspects of language. However, the precise relation between abstract theoretical ideas and empirical data from language use is not always apparent. Here, we propose to empirically test abstract semantic theories through the lens of probabilistic pragmatic modelling. We consider the historically important case of quantity words (e.g., `some', `all'). Data from a large-scale production study seem to suggest that quantity words are understood via prototypes. But based on statistical and empirical model comparison, we show that a probabilistic pragmatic model that embeds a strict truth-conditional notion of meaning explains the data just as well as a model that encodes prototypes into the meaning of quantity words.
How to simulate and analyze drift-diffusion models of timing and decision making
My talk will discuss the use of some of these four, simple Matlab functions to simulate models of timing, and to fit models to empirical data. Feel free to examine the code and the relatively brief book chapter that explains the code before the talk if you would like to learn more about computational/mathematical modeling.