← Back

Environmental

Topic spotlight
TopicWorld Wide

environmental

Discover seminars, jobs, and research tagged with environmental across World Wide.
80 curated items60 Seminars20 ePosters
Updated about 1 year ago
80 items · environmental
80 results
SeminarNeuroscience

Understanding the complex behaviors of the ‘simple’ cerebellar circuit

Megan Carey
The Champalimaud Center for the Unknown, Lisbon, Portugal
Nov 13, 2024

Every movement we make requires us to precisely coordinate muscle activity across our body in space and time. In this talk I will describe our efforts to understand how the brain generates flexible, coordinated movement. We have taken a behavior-centric approach to this problem, starting with the development of quantitative frameworks for mouse locomotion (LocoMouse; Machado et al., eLife 2015, 2020) and locomotor learning, in which mice adapt their locomotor symmetry in response to environmental perturbations (Darmohray et al., Neuron 2019). Combined with genetic circuit dissection, these studies reveal specific, cerebellum-dependent features of these complex, whole-body behaviors. This provides a key entry point for understanding how neural computations within the highly stereotyped cerebellar circuit support the precise coordination of muscle activity in space and time. Finally, I will present recent unpublished data that provide surprising insights into how cerebellar circuits flexibly coordinate whole-body movements in dynamic environments.

SeminarNeuroscience

Brain-Wide Compositionality and Learning Dynamics in Biological Agents

Kanaka Rajan
Harvard Medical School
Nov 12, 2024

Biological agents continually reconcile the internal states of their brain circuits with incoming sensory and environmental evidence to evaluate when and how to act. The brains of biological agents, including animals and humans, exploit many evolutionary innovations, chiefly modularity—observable at the level of anatomically-defined brain regions, cortical layers, and cell types among others—that can be repurposed in a compositional manner to endow the animal with a highly flexible behavioral repertoire. Accordingly, their behaviors show their own modularity, yet such behavioral modules seldom correspond directly to traditional notions of modularity in brains. It remains unclear how to link neural and behavioral modularity in a compositional manner. We propose a comprehensive framework—compositional modes—to identify overarching compositionality spanning specialized submodules, such as brain regions. Our framework directly links the behavioral repertoire with distributed patterns of population activity, brain-wide, at multiple concurrent spatial and temporal scales. Using whole-brain recordings of zebrafish brains, we introduce an unsupervised pipeline based on neural network models, constrained by biological data, to reveal highly conserved compositional modes across individuals despite the naturalistic (spontaneous or task-independent) nature of their behaviors. These modes provided a scaffolding for other modes that account for the idiosyncratic behavior of each fish. We then demonstrate experimentally that compositional modes can be manipulated in a consistent manner by behavioral and pharmacological perturbations. Our results demonstrate that even natural behavior in different individuals can be decomposed and understood using a relatively small number of neurobehavioral modules—the compositional modes—and elucidate a compositional neural basis of behavior. This approach aligns with recent progress in understanding how reasoning capabilities and internal representational structures develop over the course of learning or training, offering insights into the modularity and flexibility in artificial and biological agents.

SeminarNeuroscience

Consciousness Aesthetics

Takuya Niikawa
Kobe University
Jun 20, 2024

We can perceive aesthetic properties such as beauty and sublimity in artworks, environmental nature and even ordinary life. How about consciousness? Does consciousness have aesthetic properties? If so, what kind of aesthetic properties conscious experiences can have? If conscious experiences can have some kinds of aesthetic properties, how can we appreciate them? These questions constitute "Consciousness Aesthetics". In this talk, I will introduce consciousness aesthetics as a new field of aesthetics and discuss some of such questions.

SeminarNeuroscience

Neural mechanisms governing the learning and execution of avoidance behavior

Mario Penzo
National Institute of Mental Health, Bethesda, USA
Jun 18, 2024

The nervous system orchestrates adaptive behaviors by intricately coordinating responses to internal cues and environmental stimuli. This involves integrating sensory input, managing competing motivational states, and drawing on past experiences to anticipate future outcomes. While traditional models attribute this complexity to interactions between the mesocorticolimbic system and hypothalamic centers, the specific nodes of integration have remained elusive. Recent research, including our own, sheds light on the midline thalamus's overlooked role in this process. We propose that the midline thalamus integrates internal states with memory and emotional signals to guide adaptive behaviors. Our investigations into midline thalamic neuronal circuits have provided crucial insights into the neural mechanisms behind flexibility and adaptability. Understanding these processes is essential for deciphering human behavior and conditions marked by impaired motivation and emotional processing. Our research aims to contribute to this understanding, paving the way for targeted interventions and therapies to address such impairments.

SeminarNeuroscience

Modeling human brain development and disease: the role of primary cilia

Kyrousi Christina
Medical School, National and Kapodistrian University of Athens, Athens, Greece
Apr 23, 2024

Neurodevelopmental disorders (NDDs) impose a global burden, affecting an increasing number of individuals. While some causative genes have been identified, understanding the human-specific mechanisms involved in these disorders remains limited. Traditional gene-driven approaches for modeling brain diseases have failed to capture the diverse and convergent mechanisms at play. Centrosomes and cilia act as intermediaries between environmental and intrinsic signals, regulating cellular behavior. Mutations or dosage variations disrupting their function have been linked to brain formation deficits, highlighting their importance, yet their precise contributions remain largely unknown. Hence, we aim to investigate whether the centrosome/cilia axis is crucial for brain development and serves as a hub for human-specific mechanisms disrupted in NDDs. Towards this direction, we first demonstrated species-specific and cell-type-specific differences in the cilia-genes expression during mouse and human corticogenesis. Then, to dissect their role, we provoked their ectopic overexpression or silencing in the developing mouse cortex or in human brain organoids. Our findings suggest that cilia genes manipulation alters both the numbers and the position of NPCs and neurons in the developing cortex. Interestingly, primary cilium morphology is disrupted, as we find changes in their length, orientation and number that lead to disruption of the apical belt and altered delamination profiles during development. Our results give insight into the role of primary cilia in human cortical development and address fundamental questions regarding the diversity and convergence of gene function in development and disease manifestation. It has the potential to uncover novel pharmacological targets, facilitate personalized medicine, and improve the lives of individuals affected by NDDs through targeted cilia-based therapies.

SeminarNeuroscience

Towards Human Systems Biology of Sleep/Wake Cycles: Phosphorylation Hypothesis of Sleep

Hiroki R. Ueda
Graduate School of Medicine, University of Tokyo
Jan 14, 2024

The field of human biology faces three major technological challenges. Firstly, the causation problem is difficult to address in humans compared to model animals. Secondly, the complexity problem arises due to the lack of a comprehensive cell atlas for the human body, despite its cellular composition. Lastly, the heterogeneity problem arises from significant variations in both genetic and environmental factors among individuals. To tackle these challenges, we have developed innovative approaches. These include 1) mammalian next-generation genetics, such as Triple CRISPR for knockout (KO) mice and ES mice for knock-in (KI) mice, which enables causation studies without traditional breeding methods; 2) whole-body/brain cell profiling techniques, such as CUBIC, to unravel the complexity of cellular composition; and 3) accurate and user-friendly technologies for measuring sleep and awake states, exemplified by ACCEL, to facilitate the monitoring of fundamental brain states in real-world settings and thus address heterogeneity in human.

SeminarNeuroscienceRecording

Event-related frequency adjustment (ERFA): A methodology for investigating neural entrainment

Mattia Rosso
Ghent University, IPEM Institute for Systematic Musicology
Nov 28, 2023

Neural entrainment has become a phenomenon of exceptional interest to neuroscience, given its involvement in rhythm perception, production, and overt synchronized behavior. Yet, traditional methods fail to quantify neural entrainment due to a misalignment with its fundamental definition (e.g., see Novembre and Iannetti, 2018; Rajandran and Schupp, 2019). The definition of entrainment assumes that endogenous oscillatory brain activity undergoes dynamic frequency adjustments to synchronize with environmental rhythms (Lakatos et al., 2019). Following this definition, we recently developed a method sensitive to this process. Our aim was to isolate from the electroencephalographic (EEG) signal an oscillatory component that is attuned to the frequency of a rhythmic stimulation, hypothesizing that the oscillation would adaptively speed up and slow down to achieve stable synchronization over time. To induce and measure these adaptive changes in a controlled fashion, we developed the event-related frequency adjustment (ERFA) paradigm (Rosso et al., 2023). A total of twenty healthy participants took part in our study. They were instructed to tap their finger synchronously with an isochronous auditory metronome, which was unpredictably perturbed by phase-shifts and tempo-changes in both positive and negative directions across different experimental conditions. EEG was recorded during the task, and ERFA responses were quantified as changes in instantaneous frequency of the entrained component. Our results indicate that ERFAs track the stimulus dynamics in accordance with the perturbation type and direction, preferentially for a sensorimotor component. The clear and consistent patterns confirm that our method is sensitive to the process of frequency adjustment that defines neural entrainment. In this Virtual Journal Club, the discussion of our findings will be complemented by methodological insights beneficial to researchers in the fields of rhythm perception and production, as well as timing in general. We discuss the dos and don’ts of using instantaneous frequency to quantify oscillatory dynamics, the advantages of adopting a multivariate approach to source separation, the robustness against the confounder of responses evoked by periodic stimulation, and provide an overview of domains and concrete examples where the methodological framework can be applied.

SeminarNeuroscience

Gut/Body interactions in health and disease

Julia Cordero
University of Glasgow
Nov 20, 2023

The adult intestine is a major barrier epithelium and coordinator of multi-organ functions. Stem cells constantly repair the intestinal epithelium by adjusting their proliferation and differentiation to tissue intrinsic as well as micro- and macro-environmental signals. How these signals integrate to control intestinal and whole-body homeostasis is largely unknown. Addressing this gap in knowledge is central to an improved understanding of intestinal pathophysiology and its systemic consequences. Combining Drosophila and mammalian model systems my laboratory has discovered fundamental mechanisms driving intestinal regeneration and tumourigenesis and outlined complex inter-organ signaling regulating health and disease. During my talk, I will discuss inter-related areas of research from my lab, including:1- Interactions between the intestine and its microenvironment influencing intestinal regeneration and tumourigenesis. 2- Long-range signals from the intestine impacting whole-body in health and disease.

SeminarNeuroscienceRecording

Visual-vestibular cue comparison for perception of environmental stationarity

Paul MacNeilage
University of Nevada, Reno
Oct 25, 2023

Note the later time!

SeminarNeuroscience

How Intermittent Bioenergetic Challenges Enhance Brain and Body Health

Mark Mattson
Johns Hopkins University School of Medicine
Sep 25, 2023

Humans and other animals evolved in habitats fraught with a range of environmental challenges to their bodies and brains. Accordingly, cells and organ systems possess adaptive stress-responsive signaling pathways that enable them to not only withstand environmental challenges, but also to prepare for future challenges and function more efficiently. These phylogenetically conserved processes are the foundation of the hormesis principle in which repeated exposures to low to moderate amounts of an environmental challenge improve cellular and organismal fitness. Here I describe cellular and molecular mechanisms by which cells in the brain and body respond to intermittent fasting and exercise in ways that enhance performance and counteract aging and disease processes. Switching back and forth between adaptive stress response (during fasting and exercise) and growth and plasticity (eating, resting, sleeping) modes enhances the performance and resilience of various organ systems. While pharmacological interventions that engage a particular hormetic mechanism are being developed, it seems unlikely that any will prove superior to fasting and exercise.

SeminarNeuroscience

The Picower Institute Spring 2023 Symposium "Environmental and Social Determinants of Child Mental Health

Cecile Richards (Keynote - fmr President of Planned Parenthood), Gregory Bratman, PhD, Annie Belcourt, PhD, Paul Dworkin, MD, Byungkook Lim, PhD, Sarah Milligan-Toffler, Catherine Jensen Peña, PhD, Ravi Raju, MD. PhD, Robert Sege, MD, PhD, Marc Weisskopf, PhD, ScD, Nsedu Obot Witherspoon, MPH
May 10, 2023

Studies show that abuse, neglect or trauma during childhood can lead to lifelong struggles including with mental health. Fortunately research also indicates that solutions and interventions at various stages of life can be developed to help. But even among people who remain resilient or do not experience acute stresses, a lack of opportunity early in life due to poverty or systemic racism can still constrain their ability to realize their full potential. In what ways are health and other outcomes affected by early life difficulty? What can individuals and institutions do to enhance opportunity?" "This daylong event will feature talks by neuroscientists, policy experts, physicians, educators and activists as they discuss how our experiences and biology work together to affect how our minds develop and what can be accomplished in helping people overcome early disadvantages.

SeminarNeuroscience

Establishment and aging of the neuronal DNA methylation landscape in the hippocampus

Sara Zocher, PhD
German Center for Neurodegenerative Diseases (DZNE), Dresden
Apr 11, 2023

The hippocampus is a brain region with key roles in memory formation, cognitive flexibility and emotional control. Yet hippocampal function is impaired severely during aging and in neurodegenerative diseases, and impairments in hippocampal function underlie age-related cognitive decline. Accumulating evidence suggests that the deterioration of the neuron-specific epigenetic landscape during aging contributes to their progressive, age-related dysfunction. For instance, we have recently shown that aging is associated with pronounced alterations of neuronal DNA methylation patterns in the hippocampus. Because neurons are generated mostly during development with limited replacement in the adult brain, they are particularly long-lived cells and have to maintain their cell-type specific gene expression programs life-long in order to preserve brain function. Understanding the epigenetic mechanisms that underlie the establishment and long-term maintenance of neuron-specific gene expression programs, will help us to comprehend the sources and consequences of their age-related deterioration. In this talk, I will present our recent work that investigated the role of DNA methylation in the establishment of neuronal gene expression programs and neuronal function, using adult neurogenesis in the hippocampus as a model. I will then describe the effects of aging on the DNA methylation landscape in the hippocampus and discuss the malleability of the aging neuronal methylome to lifestyle and environmental stimulation.

SeminarNeuroscienceRecording

Autopoiesis and Enaction in the Game of Life

Randall Beer
Indiana University
Mar 16, 2023

Enaction plays a central role in the broader fabric of so-called 4E (embodied, embedded, extended, enactive) cognition. Although the origin of the enactive approach is widely dated to the 1991 publication of the book "The Embodied Mind" by Varela, Thompson and Rosch, many of the central ideas trace to much earlier work. Over 40 years ago, the Chilean biologists Humberto Maturana and Francisco Varela put forward the notion of autopoiesis as a way to understand living systems and the phenomena that they generate, including cognition. Varela and others subsequently extended this framework to an enactive approach that places biological autonomy at the foundation of situated and embodied behavior and cognition. I will describe an attempt to place Maturana and Varela's original ideas on a firmer foundation by studying them within the context of a toy model universe, John Conway's Game of Life (GoL) cellular automata. This work has both pedagogical and theoretical goals. Simple concrete models provide an excellent vehicle for introducing some of the core concepts of autopoiesis and enaction and explaining how these concepts fit together into a broader whole. In addition, a careful analysis of such toy models can hone our intuitions about these concepts, probe their strengths and weaknesses, and move the entire enterprise in the direction of a more mathematically rigorous theory. In particular, I will identify the primitive processes that can occur in GoL, show how these can be linked together into mutually-supporting networks that underlie persistent bounded entities, map the responses of such entities to environmental perturbations, and investigate the paths of mutual perturbation that these entities and their environments can undergo.

SeminarNeuroscienceRecording

Programmed axon death: from animal models into human disease

Michael Coleman
Department of Clinical Neurosciences, University of Cambridge
Jan 30, 2023

Programmed axon death is a widespread and completely preventable mechanism in injury and disease. Mouse and Drosophila studies define a molecular pathway involving activation of SARM1 NA Dase and its prevention by NAD synthesising enzyme NMNAT2 . Loss of axonal NMNAT2 causes its substrate, NMN , to accumulate and activate SARM1 , driving loss of NAD and changes in ATP , ROS and calcium. Animal models caused by genetic mutation, toxins, viruses or metabolic defects can be alleviated by blocking programmed axon death, for example models of CMT1B , chemotherapy-induced peripheral neuropathy (CIPN), rabies and diabetic peripheral neuropathy (DPN). The perinatal lethality of NMNAT2 null mice is completely rescued, restoring a normal, healthy lifespan. Animal models lack the genetic and environmental diversity present in human populations and this is problematic for modelling gene-environment combinations, for example in CIPN and DPN , and identifying rare, pathogenic mutations. Instead, by testing human gene variants in WGS datasets for loss- and gain-of-function, we identified enrichment of rare SARM1 gain-of-function variants in sporadic ALS , despite previous negative findings in SOD1 transgenic mice. We have shown in mice that heterozygous SARM1 loss-of-function is protective from a range of axonal stresses and that naturally-occurring SARM1 loss-of-function alleles are present in human populations. This enables new approaches to identify disorders where blocking SARM1 may be therapeutically useful, and the existence of two dominant negative human variants in healthy adults is some of the best evidence available that drugs blocking SARM1 are likely to be safe. Further loss- and gain-of-function variants in SARM1 and NMNAT2 are being identified and used to extend and strengthen the evidence of association with neurological disorders. We aim to identify diseases, and specific patients, in whom SARM1 -blocking drugs are most likely to be effective.

SeminarPsychology

Adaptation via innovation in the animal kingdom

Kata Horváth
Eötvös Loránd University & Lund University
Nov 23, 2022

Over the course of evolution, the human race has achieved a number of remarkable innovations, that have enabled us to adapt to and benefit from the environment ever more effectively. The ongoing environmental threats and health disasters of our world have now made it crucial to understand the cognitive mechanisms behind innovative behaviours. In my talk, I will present two research projects with examples of innovation-based behavioural adaptation from the taxonomic kingdom of animals, serving as a comparative psychological model for mapping the evolution of innovation. The first project focuses on the challenge of overcoming physical disability. In this study, we investigated an injured kea (Nestor notabilis) that exhibits an efficient, intentional, and innovative tool-use behaviour to compensate his disability, showing evidence for innovation-based adaptation to a physical disability in a non-human species. The second project focuses on the evolution of fire use from a cognitive perspective. Fire has been one of the most dominant ecological forces in human evolution; however, it is still unknown what capabilities and environmental factors could have led to the emergence of fire use. In the core study of this project, we investigated a captive population of Japanese macaques (Macaca fuscata) that has been regularly exposed to campfires during the cold winter months for over 60 years. Our results suggest that macaques are able to take advantage of the positive effects of fire while avoiding the dangers of flames and hot ashes, and exhibit calm behaviour around the bonfire. In addition, I will present a research proposal targeting the foraging behaviour of predatory birds in parts of Australia frequently affected by bushfires. Anecdotal reports suggest that some birds use burning sticks to spread the flames, a behaviour that has not been scientifically observed and evaluated. In summary, the two projects explore innovative behaviours along three different species groups, three different habitats, and three different ecological drivers, providing insights into the cognitive and behavioural mechanisms of adaptation through innovation.

SeminarNeuroscience

At the nexus of genes, aging and environment: Understanding transcriptomic and epigenomic regulation in Parkinson's disease

Julia Schulze-Hentrich
Institute of Medical Genetics and Applied Genomics, University of Tübingen
Jul 19, 2022

Parkinson’s Disease (PD), the most common neurodegenerative movement disorder, is based on a complex interplay between genetic predispositions, aging processes, and environmental influences. In order to better understand the gene-environment axis in PD, we pursue a multi-omics approach to comprehensively interrogate genome-wide changes in histone modifications, DNA methylation, and hydroxymethylation, accompanied by transcriptomic profiling in cell and animal models of PD as well as large patient cohorts. Furthermore, we assess the plasticity of epigenomic modifications under influence of environmental factors using longitudinal cohorts of sporadic PD cases as well as mouse models exposed to specific environmental factors. Here, we present gene expression changes in PD mouse models in context of aging as well as environmental enrichment and high-fat diet.

SeminarNeuroscience

Don't forget the gametes: Neurodevelopmental pathogenesis starts in the sperm and egg

Jill Escher
Jill Escher is founder of the Escher Fund for Autism, which funds research on non-genetic inheritance, as well as autism-related programs. She is a member of the governing council of the Environmental Mutagenesis and Genomics Society, where she is past chair of the Germ Cell and Heritable Effects special interest group. She also serves as president of the National Council on Severe Autism and past president of Autism Society San Francisco Bay Area. A former lawyer, she and her husband are the pa
Jul 5, 2022

Proper development of the nervous system depends not only on the inherited DNA sequence, but also on proper regulation of gene expression, as controlled in part by epigenetic mechanisms present in the parental gametes. In this presentation an internationally recognized research advocate explains why researchers concerned about the origins of increasingly prevalent neurodevelopmental disorders such as autism and attention deficit hyperactivity disorder should look beyond genetics in probing the origins of dysregulated transcription of brain-related genes. The culprit for a subset of cases, she contends, may lie in the exposure history of the parents, and thus their germ cells. To illustrate how environmentally informed, nongenetic dysfunction may occur, she focuses on the example of parents' histories of exposure to common agents of modern inhalational anesthesia, a highly toxic exposure that in mammalian models has been seen to induce heritable neurodevelopmental abnormality in offspring born of exposed germline.

SeminarNeuroscience

From Computation to Large-scale Neural Circuitry in Human Belief Updating

Tobias Donner
University Medical Center Hamburg-Eppendorf
Jun 28, 2022

Many decisions under uncertainty entail dynamic belief updating: multiple pieces of evidence informing about the state of the environment are accumulated across time to infer the environmental state, and choose a corresponding action. Traditionally, this process has been conceptualized as a linear and perfect (i.e., without loss) integration of sensory information along purely feedforward sensory-motor pathways. Yet, natural environments can undergo hidden changes in their state, which requires a non-linear accumulation of decision evidence that strikes a tradeoff between stability and flexibility in response to change. How this adaptive computation is implemented in the brain has remained unknown. In this talk, I will present an approach that my laboratory has developed to identify evidence accumulation signatures in human behavior and neural population activity (measured with magnetoencephalography, MEG), across a large number of cortical areas. Applying this approach to data recorded during visual evidence accumulation tasks with change-points, we find that behavior and neural activity in frontal and parietal regions involved in motor planning exhibit hallmarks signatures of adaptive evidence accumulation. The same signatures of adaptive behavior and neural activity emerge naturally from simulations of a biophysically detailed model of a recurrent cortical microcircuit. The MEG data further show that decision dynamics in parietal and frontal cortex are mirrored by a selective modulation of the state of early visual cortex. This state modulation is (i) specifically expressed in the alpha frequency-band, (ii) consistent with feedback of evolving belief states from frontal cortex, (iii) dependent on the environmental volatility, and (iv) amplified by pupil-linked arousal responses during evidence accumulation. Together, our findings link normative decision computations to recurrent cortical circuit dynamics and highlight the adaptive nature of decision-related long-range feedback processing in the brain.

SeminarNeuroscience

Mismatching clocks: the effect of circadian misalignment on peripheral 24-h rhythms in humans

Laura Kervezee
Leiden University Medical Center (Netherlands)
Jun 12, 2022

Night shift work is associated with adverse health effects and leads to misalignment between timing cues from the environment and the endogenous circadian clock. In this presentation, I will discuss the effect of circadian misalignment induced by night shift work on peripheral 24-h rhythms on the transcriptome and metabolome in humans, presenting findings from both controlled laboratory studies and field studies. Furthermore, I will highlight the importance of taking into account interindividual differences in the response to circadian misalignment.

SeminarNeuroscienceRecording

Reprogramming the nociceptive circuit topology reshapes sexual behavior in C. elegans

Vladyslava Pechuk
Oren lab, Weizmann Institute of Science
Jun 7, 2022

In sexually reproducing species, males and females respond to environmental sensory cues and transform the input into sexually dimorphic traits. Yet, how sexually dimorphic behavior is encoded in the nervous system is poorly understood. We characterize the sexually dimorphic nociceptive behavior in C. elegans – hermaphrodites present a lower pain threshold than males in response to aversive stimuli, and study the underlying neuronal circuits, which are composed of the same neurons that are wired differently. By imaging receptor expression, calcium responses and glutamate secretion, we show that sensory transduction is similar in the two sexes, and therefore explore how downstream network topology shapes dimorphic behavior. We generated a computational model that replicates the observed dimorphic behavior, and used this model to predict simple network rewirings that would switch the behavior between the sexes. We then showed experimentally, using genetic manipulations, artificial gap junctions, automated tracking and optogenetics, that these subtle changes to male connectivity result in hermaphrodite-like aversive behavior in-vivo, while hermaphrodite behavior was more robust to perturbations. Strikingly, when presented with aversive cues, rewired males were compromised in finding mating partners, suggesting that the network topology that enables efficient avoidance of noxious cues would have a reproductive "cost". To summarize, we present a deconstruction of a sex-shared neural circuit that affects sexual behavior, and how to reprogram it. More broadly, our results are an example of how common neuronal circuits changed their function during evolution by subtle topological rewirings to account for different environmental and sexual needs.

SeminarNeuroscienceRecording

Why do some animals have more than two eyes?

Lauren Sumner-Rooney
Leibniz Institute for Research on Evolution and Biodiversity
May 8, 2022

The evolution of vision revolutionised animal biology, and eyes have evolved in a stunning array of diverse forms over the past half a billion years. Among these are curious duplicated visual systems, where eyes can be spread across the body and specialised for different tasks. Although it sounds radical, duplicated vision is found in most major groups across the animal kingdom, but remains poorly understood. We will explore how and why animals collect information about their environment in this unusual way, looking at examples from tropical forests to the sea floor, and from ancient arthropods to living jellyfish. Have we been short-changed with just two eyes? Dr Lauren Sumner-Rooney is a Research Fellow at the OUMNH studying the function and evolution of animal visual systems. Lauren completed her undergraduate degree at Oxford in 2012, and her PhD at Queen’s University Belfast in 2015. She worked as a research technician and science communicator at the Royal Veterinary College (2015-2016) and held a postdoctoral research fellowship at the Museum für Naturkunde, Berlin (2016-2017) before arriving at the Museum in 2017.

SeminarNeuroscienceRecording

Transcriptional adaptation couples past experience and future sensory responses

Tatsuya Tsukahara
Datta lab, Harvard Medical School
Apr 26, 2022

Animals traversing different environments encounter both stable background stimuli and novel cues, which are generally thought to be detected by primary sensory neurons and then distinguished by downstream brain circuits. Sensory adaptation is a neural mechanism that filters background by minimizing responses to stable sensory stimuli, and a fundamental feature of sensory systems. Adaptation over relatively fast timescales (milliseconds to minutes) have been reported in many sensory systems. However, adaptation to persistent environmental stimuli over longer timescales (hours to days) have been largely unexplored, even though those timescales are ethologically important since animals typically stay in one environment for hours. I showed that each of the ~1,000 olfactory sensory neuron (OSN) subtypes in the mouse harbors a distinct transcriptome whose content is precisely determined by interactions between its odorant receptor and the environment. This transcriptional variation is systematically organized to support sensory adaptation: expression levels of many genes relevant to transforming odors into spikes continuously vary across OSN subtypes, dynamically adjust to new environments over hours, and accurately predict acute OSN-specific odor responses. The sensory periphery therefore separates salient signals from predictable background via a transcriptional mechanism whose moment-to-moment state reflects the past and constrains the future; these findings suggest a general model in which structured transcriptional variation within a cell type reflects individual experience.

SeminarNeuroscienceRecording

Spatial uncertainty provides a unifying account of navigation behavior and grid field deformations

Yul Kang
Lengyel lab, Cambridge University
Apr 5, 2022

To localize ourselves in an environment for spatial navigation, we rely on vision and self-motion inputs, which only provide noisy and partial information. It is unknown how the resulting uncertainty affects navigation behavior and neural representations. Here we show that spatial uncertainty underlies key effects of environmental geometry on navigation behavior and grid field deformations. We develop an ideal observer model, which continually updates probabilistic beliefs about its allocentric location by optimally combining noisy egocentric visual and self-motion inputs via Bayesian filtering. This model directly yields predictions for navigation behavior and also predicts neural responses under population coding of location uncertainty. We simulate this model numerically under manipulations of a major source of uncertainty, environmental geometry, and support our simulations by analytic derivations for its most salient qualitative features. We show that our model correctly predicts a wide range of experimentally observed effects of the environmental geometry and its change on homing response distribution and grid field deformation. Thus, our model provides a unifying, normative account for the dependence of homing behavior and grid fields on environmental geometry, and identifies the unavoidable uncertainty in navigation as a key factor underlying these diverse phenomena.

SeminarNeuroscienceRecording

The ubiquity of opportunity cost: Foraging and beyond

Nathaniel Daw
Princeton University
Mar 29, 2022

A key insight from the foraging literature is the importance of assessing the overall environmental quality — via global reward rate or similar measures, which capture the opportunity cost of time and can guide behavioral allocation toward relatively richer options. Meanwhile, the majority of research in decision neuroscience and computational psychiatry has focused instead on how choices are guided by much more local, event-locked evaluations: of individual situations, actions, or outcomes. I review a combination of research and theoretical speculation from my lab and others that emphasizes the role of foraging's average rewards and opportunity costs in a much larger range of decision problems, including risk, time discounting, vigor, cognitive control, and deliberation. The broad range of behaviors affected by this type of evaluation gives a new theoretical perspective on the effects of stress and autonomic mobilization, and on mood and the broad range of symptoms associated with mood disorders.

SeminarNeuroscienceRecording

Architectural Psychology with Professor David Canter

David Canter
University of Liverpool
Feb 11, 2022
SeminarNeuroscienceRecording

Deforming the metric of cognitive maps distorts memory

Jacob Bellmund
Doeller lab, MPI CBS and the Kavli Institute
Jan 11, 2022

Environmental boundaries anchor cognitive maps that support memory. However, trapezoidal boundary geometry distorts the regular firing patterns of entorhinal grid cells proposedly providing a metric for cognitive maps. Here, we test the impact of trapezoidal boundary geometry on human spatial memory using immersive virtual reality. Consistent with reduced regularity of grid patterns in rodents and a grid-cell model based on the eigenvectors of the successor representation, human positional memory was degraded in a trapezoid compared to a square environment; an effect particularly pronounced in the trapezoid’s narrow part. Congruent with spatial frequency changes of eigenvector grid patterns, distance estimates between remembered positions were persistently biased; revealing distorted memory maps that explained behavior better than the objective maps. Our findings demonstrate that environmental geometry affects human spatial memory similarly to rodent grid cell activity — thus strengthening the putative link between grid cells and behavior along with their cognitive functions beyond navigation.

SeminarNeuroscience

The processing of price during purchase decision making: Are there neural differences among prosocial and non-prosocial consumers?

Anna Shepelenko
HSE University
Dec 8, 2021

International organizations, governments and companies are increasingly committed to developing measures that encourage adoption of sustainable consumption patterns among the population. However, their success requires a deep understanding of the everyday purchasing decision process and the elements that shape it. Price is an element that stands out. Prior research concluded that the influence of price on purchase decisions varies across consumer profiles. Yet no consumer behavior study to date has assessed the differences of price processing among consumers adopting sustainable habits (prosocial) as opposed to those who have not (non-prosocial). This is the first study to resort to neuroimaging tools to explore the underlying neural mechanisms that reveal the effect of price on prosocial and non-prosocial consumers. Self-reported findings indicate that prosocial consumers place greater value on collective costs and benefits while non-prosocial consumers place a greater weight on price. The neural data gleaned from this analysis offers certain explanations as to the origin of the differences. Non-prosocial (vs. prosocial) consumers, in fact, exhibit a greater activation in brain areas involved with reward, valuation and choice when evaluating price information. These findings could steer managers to improve market segmentation and assist institutions in their design of campaigns fostering environmentally sustainable behaviors

SeminarNeuroscience

Worms use their brain to regulate their behavior and physiology to deal with the lethal threat of hydrogen peroxide

Javier Apfeld
Northeastern University
Nov 28, 2021

In this talk I will discuss our recent findings that sensory signals from the brain adjust the physiology and behavior of the nematode C. elegans, enabling this animal to deal with the lethal threat of hydrogen peroxide. Hydrogen peroxide (H2O2) is the most common chemical threat in the microbial battlefield. Prevention and repair of the damage that hydrogen peroxide inflicts on macromolecules are critical for health and survival. In the first part of the talk, I will discuss our findings that C. elegans represses their own H2O2 defenses in response to sensory perception of Escherichia coli, the nematode’s food source, because E. coli can deplete H2O2 from the local environment and thereby protect the nematodes. Thus, the E. coli self-defense mechanisms create a public good, an environment safe from the threat of H2O2, that benefits C. elegans. In the second part of the talk, I will discuss how the modulation of C. elegans’ sensory perception by the interplay of hydrogen peroxide and bacteria adjusts the nematode’s behavior to improve the nematode’s chances of finding a niche that provides both food and protection from hydrogen peroxide.

SeminarNeuroscience

Wiring & Rewiring: Experience-Dependent Circuit Development and Plasticity in Sensory Cortices

Jennifer Sun
University College London
Nov 21, 2021

To build an appropriate representation of the sensory stimuli around the world, neural circuits are wired according to both intrinsic factors and external sensory stimuli. Moreover, the brain circuits have the capacity to rewire in response to altered environment, both during early development and throughout life. In this talk, I will give an overview about my past research in studying the dynamic processes underlying functional maturation and plasticity in rodent sensory cortices. I will also present data about the current and future research in my lab – that is, the synaptic and circuit mechanisms by which the mature brain circuits employ to regulate the balance between stability and plasticity. By applying chronic 2-photon calcium and close-loop visual exposure, we studied the circuit changes at single-neuron resolution to show that concurrent running with visual stimulus is required to drive neuroplasticity in the adult brain.

SeminarNeuroscience

The processing of price during purchase decision making: Are there neural differences among prosocial and non-prosocial consumers?

Anna Shepelenko
HSE University
Oct 13, 2021

International organizations, governments and companies are increasingly committed to developing measures that encourage adoption of sustainable consumption patterns among the population. However, their success requires a deep understanding of the everyday purchasing decision process and the elements that shape it. Price is an element that stands out. Prior research concluded that the influence of price on purchase decisions varies across consumer profiles. Yet no consumer behavior study to date has assessed the differences of price processing among consumers adopting sustainable habits (prosocial) as opposed to those who have not (non-prosocial). This is the first study to resort to neuroimaging tools to explore the underlying neural mechanisms that reveal the effect of price on prosocial and non-prosocial consumers. Self-reported findings indicate that prosocial consumers place greater value on collective costs and benefits while non-prosocial consumers place a greater weight on price. The neural data gleaned from this analysis offers certain explanations as to the origin of the differences. Non-prosocial (vs. prosocial) consumers, in fact, exhibit a greater activation in brain areas involved with reward, valuation and choice when evaluating price information. These findings could steer managers to improve market segmentation and assist institutions in their design of campaigns fostering environmentally sustainable behaviors

SeminarNeuroscienceRecording

Swarms for people

Sabine Hauert
University of Bristol
Oct 7, 2021

As tiny robots become individually more sophisticated, and larger robots easier to mass produce, a breakdown of conventional disciplinary silos is enabling swarm engineering to be adopted across scales and applications, from nanomedicine to treat cancer, to cm-sized robots for large-scale environmental monitoring or intralogistics. This convergence of capabilities is facilitating the transfer of lessons learned from one scale to the other. Cm-sized robots that work in the 1000s may operate in a way similar to reaction-diffusion systems at the nanoscale, while sophisticated microrobots may have individual capabilities that allow them to achieve swarm behaviour reminiscent of larger robots with memory, computation, and communication. Although the physics of these systems are fundamentally different, much of their emergent swarm behaviours can be abstracted to their ability to move and react to their local environment. This presents an opportunity to build a unified framework for the engineering of swarms across scales that makes use of machine learning to automatically discover suitable agent designs and behaviours, digital twins to seamlessly move between the digital and physical world, and user studies to explore how to make swarms safe and trustworthy. Such a framework would push the envelope of swarm capabilities, towards making swarms for people.

SeminarNeuroscience

Population dynamics of the thalamic head direction system during drift and reorientation

Zaki Ajabi
McGill University
Oct 3, 2021

The head direction (HD) system is classically modeled as a ring attractor network which ensures a stable representation of the animal’s head direction. This unidimensional description popularized the view of the HD system as the brain’s internal compass. However, unlike a globally consistent magnetic compass, the orientation of the HD system is dynamic, depends on local cues and exhibits remapping across familiar environments5. Such a system requires mechanisms to remember and align to familiar landmarks, which may not be well described within the classic 1-dimensional framework. To search for these mechanisms, we performed large population recordings of mouse thalamic HD cells using calcium imaging, during controlled manipulations of a visual landmark in a familiar environment. First, we find that realignment of the system was associated with a continuous rotation of the HD network representation. The speed and angular distance of this rotation was predicted by a 2nd dimension to the ring attractor which we refer to as network gain, i.e. the instantaneous population firing rate. Moreover, the 360-degree azimuthal profile of network gain, during darkness, maintained a ‘memory trace’ of a previously displayed visual landmark. In a 2nd experiment, brief presentations of a rotated landmark revealed an attraction of the network back to its initial orientation, suggesting a time-dependent mechanism underlying the formation of these network gain memory traces. Finally, in a 3rd experiment, continuous rotation of a visual landmark induced a similar rotation of the HD representation which persisted following removal of the landmark, demonstrating that HD network orientation is subject to experience-dependent recalibration. Together, these results provide new mechanistic insights into how the neural compass flexibly adapts to environmental cues to maintain a reliable representation of the head direction.

SeminarPhysics of LifeRecording

Growing in flows: from evolutionary dynamics to microbial jets

Severine Atis
University of Chicago
Sep 26, 2021

Biological systems can self-organize in complex structures, able to evolve and adapt to widely varying environmental conditions. Despite the importance of fluid flow for transporting and organizing populations, few laboratory systems exist to systematically investigate the impact of advection on their spatial evolutionary dynamics. In this talk, I will discuss how we can address this problem by studying the morphology and genetic spatial structure of microbial colonies growing on the surface of a viscous substrate. When grown on a liquid, I will show that S. cerevisiae (baker’s yeast) can behave like “active matter” and collectively generate a fluid flow many times larger than the unperturbed colony expansion speed, which in turn produces mechanical stresses and fragmentation of the initial colony. Combining laboratory experiments with numerical modeling, I will demonstrate that the coupling between metabolic activity and hydrodynamic flows can produce positive feedbacks and drive preferential growth phenomena leading to the formation of microbial jets. Our work provides rich opportunities to explore the interplay between hydrodynamics, growth and competition within a versatile system.

SeminarNeuroscience

Gestational exposure to environmental toxins, infections, and stressors are epidemiologically linked to neurodevelopmental disorders

Staci D. Bilbo
Duke University
Sep 12, 2021

Gestational exposure to environmental toxins, infections, and stressors are epidemiologically linked to neurodevelopmental disorders with strong male-bias, such as autism spectrum disorder. We modeled some of these prenatal risk factors in mice, by co-exposing pregnant dams to an environmental pollutant and limited-resource stress, which robustly dysregulated the maternal immune system. Male but not female offspring displayed long-lasting behavioral abnormalities and alterations in the activity of brain networks encoding social interactions, along with disruptions of gut structure and microbiome composition. Cellularly, prenatal stressors impaired microglial synaptic pruning in males during early postnatal development. Precise inhibition of microglial phagocytosis during the same critical period mimicked the impact of prenatal stressors on the male-specific social deficits. Conversely, modifying the gut microbiome rescued the social and cellular deficits, indicating that environmental stressors alter neural circuit formation in males via impairing microglia function during development, perhaps via a gut-brain disruption.

SeminarNeuroscienceRecording

The role of the primate prefrontal cortex in inferring the state of the world and predicting change

Ramon Bartolo
Averbeck lab, Nation Institute of Mental Health
Sep 7, 2021

In an ever-changing environment, uncertainty is omnipresent. To deal with this, organisms have evolved mechanisms that allow them to take advantage of environmental regularities in order to make decisions robustly and adjust their behavior efficiently, thus maximizing their chances of survival. In this talk, I will present behavioral evidence that animals perform model-based state inference to predict environmental state changes and adjust their behavior rapidly, rather than slowly updating choice values. This model-based inference process can be described using Bayesian change-point models. Furthermore, I will show that neural populations in the prefrontal cortex accurately predict behavioral switches, and that the activity of these populations is associated with Bayesian estimates. In addition, we will see that learning leads to the emergence of a high-dimensional representational subspace that can be reused when the animals re-learn a previously learned set of action-value associations. Altogether, these findings highlight the role of the PFC in representing a belief about the current state of the world.

SeminarNeuroscience

Integration of „environmental“ information in the neuronal epigenome

Geraldine Zimmer-Bensch
Functional Epigenetics in the Animal Model, Institute of Biology II, RWTH Aachen, Aachen, Germany
Aug 24, 2021

The inhibitory actions of the heterogeneous collection of GABAergic interneurons tremendously influence cortical information processing, which is reflected by diseases like autism, epilepsy and schizophrenia that involve defects in cortical inhibition. Apart from the regulation of physiological processes like synaptic transmission, proper interneuron function also relies on their correct development. Hence, decrypting regulatory networks that direct proper cortical interneuron development as well as adult functionality is of great interest, as this helps to identify critical events implicated in the etiology of the aforementioned diseases. Thereby, extrinsic factors modulate these processes and act on cell- and stage-specific transcriptional programs. Herein, epigenetic mechanisms of gene regulation, like DNA methylation executed by DNA methyltransferases (DNMTs), histone modifications and non-coding RNAs, call increasing attention in integrating “environmental information” in our genome and sculpting physiological processes in the brain relevant for human mental health. Several studies associate altered expression levels and function of the DNA methyltransferase 1 (DNMT1) in subsets of embryonic and adult cortical interneurons in patients diagnosed with schizophrenia. Although accumulating evidence supports the relevance of epigenetic signatures for instructing cell type-specific development, only very little is known about their functional implications in discrete developmental processes and in subtype-specific maturation of cortical interneurons. Similarly, little is known about the role of DNMT1 in regulating adult interneurons functionality. This talk will provide an overview about newly identified and roles DNMT1 has in orchestrating cortical interneuron development and adult function. Further, this talk will report about the implications of lncRNAs in mediating site-specific DNA methylation in response to discrete external stimuli.

SeminarNeuroscienceRecording

Achieving Abstraction: Early Competence & the Role of the Learning Context

Caren Walker
University of California, San Diego
Jul 14, 2021

Children's emerging ability to acquire and apply relational same-different concepts is often cited as a defining feature of human cognition, providing the foundation for abstract thought. Yet, young learners often struggle to ignore irrelevant surface features to attend to structural similarity instead. I will argue that young children have--and retain--genuine relational concepts from a young age, but tend to neglect abstract similarity due to a learned bias to attend to objects and their properties. Critically, this account predicts that differences in the structure of children's environmental input should lead to differences in the type of hypotheses they privilege and apply. I will review empirical support for this proposal that has (1) evaluated the robustness of early competence in relational reasoning, (2) identified cross-cultural differences in relational and object bias, and (3) provided evidence that contextual factors play a causal role in relational reasoning. Together, these studies suggest that the development of abstract thought may be more malleable and context-sensitive than initially believed.

SeminarNeuroscience

Microbiome and behaviour: Exploring underlying mechanisms

Sarah-Jane Leigh
APC Microbiome Ireland
Jul 9, 2021

Environmental insults alter brain function and behaviour inboth rodents and people. One putative underlying mechanism that has receivedsubstantial attention recently is the gut microbiota, the ecosystem ofsymbiotic microorganisms that populate the intestinal tract, which is known toplay a role in brain health and function via the gut-brain axis. Two keyenvironmental insults known to affect both brain function and behaviour, andthe gut microbiome, are poor diet and psychological stress. While there isstrong evidence for interactions between the microbiome and host physiology inthe context of chronic stress, little is known about the role of the microbiomein the host response to acute stress. Determining the underlying mechanisms bywhich stress may provoke functional changes in the gut and brain is criticalfor developing therapeutics to alleviate adverse consequences of traumaticstress.

SeminarNeuroscience

Using extra-hippocampal cognitive maps for goal-directed spatial navigation

Hiroshi Ito
Max Planck Institute for Brain Research
Jul 6, 2021

Goal-directed navigation requires precise estimates of spatial relationships between current position and future goal, as well as planning of an associated route or action. While neurons in the hippocampal formation can represent the animal’s position and nearby trajectories, their role in determining the animal’s destination or action has been questioned. We thus hypothesize that brain regions outside the hippocampal formation may play complementary roles in navigation, particularly for guiding goal-directed behaviours based on the brain’s internal cognitive map. In this seminar, I will first describe a subpopulation of neurons in the retrosplenial cortex (RSC) that increase their firing when the animal approaches environmental boundaries, such as walls or edges. This boundary coding is independent of direct visual or tactile sensation but instead depends on inputs from the medial entorhinal cortex (MEC) that contains spatial tuning cells, such as grid cells or border cells. However, unlike MEC border cells, we found that RSC border cells encode environmental boundaries in a self-centred egocentric coordinate frame, which may allow an animal for efficient avoidance from approaching walls or edges during navigation. I will then discuss whether the brain can possess a precise estimate of remote target location during active environmental exploration. Such a spatial code has not been described in the hippocampal formation. However, we found that neurons in the rat orbitofrontal cortex (OFC) form spatial representations that persistently point to the animal’s subsequent goal destination throughout navigation. This destination coding emerges before navigation onset without direct sensory access to a distal goal, and are maintained via destination-specific neural ensemble dynamics. These findings together suggest key roles for extra-hippocampal regions in spatial navigation, enabling animals to choose appropriate actions toward a desired destination by avoiding possible dangers.

SeminarNeuroscience

Environmental Impact of Research

Martin Farley, Chathurika Akurugoda
King's College London, University of Colombo
Jun 29, 2021

Research, whether direct or indirect, aims to advance knowledge and change the world for the better. But whether you are spike-sorting with high-performance computers, getting through 100 single-use plastic pipette tips in a day or receiving regular shipments of metal-rich equipment, your research is having a long-term and detrimental impact on the environment. This session will explore how life sciences research contributes to the climate crisis and negatively impacts local and global environments. Practical advice will be given on ways to reduce the footprint of your own research.

SeminarNeuroscience

Neural stem cells as biomarkers of cognitive aging and dementia

Sandrine Thuret
King's College London, Institute of Psychiatry, Psychology & Neuroscience, Basic & Clinical, Neuroscience Department
Jun 24, 2021

Adult hippocampal neurogenesis is implicated in memory formation and mood regulation. The Thuret lab investigates environmental and molecular mechanisms controlling the production of these adult-born neurons and how they impact mental health. We study neurogenesis in healthy ageing as well as in the context of diseases such as Alzheimer’s and depression. By approaching neurogenesis in health and disease, the strategy is two folds: (i) Validating the neurogenic process as a target for prevention and pharmacological interventions. (ii) Developing neurogenesis as a biomarker of disease prediction and progression. In this talk, I will focus on presenting some recent human studies demonstrating how hippocampal neural stem cells fate can be used as biomarkers of cognitive aging and dementia.

SeminarNeuroscience

Dynamical Neuromorphic Systems

Julie Grollier
CNRS/Thales lab, Palaiseau, France
Jun 14, 2021

In this talk, I aim to show that the dynamical properties of emerging nanodevices can accelerate the development of smart, and environmentally friendly chips that inherently learn through their physics. The goal of neuromorphic computing is to draw inspiration from the architecture of the brain to build low-power circuits for artificial intelligence. I will first give a brief overview of the state of the art of neuromorphic computing, highlighting the opportunities offered by emerging nanodevices in this field, and the associated challenges. I will then show that the intrinsic dynamical properties of these nanodevices can be exploited at the device and algorithmic level to assemble systems that infer and learn though their physics. I will illustrate these possibilities with examples from our work on spintronic neural networks that communicate and compute through their microwave oscillations, and on an algorithm called Equilibrium Propagation that minimizes both the error and energy of a dynamical system.

SeminarNeuroscience

Investigating the environmental etiology of autism spectrum disorder

Magdalena Janecka
Icahn School of Medicine at Mount Sinai
Jun 8, 2021
SeminarNeuroscience

Brain-body interactions in the metabolic/nutritional control of puberty: Neuropeptide pathways and central energy sensors

Manuel Tena-Sempere
IMIBIC Cordoba
May 30, 2021

Puberty is a brain-driven phenomenon, which is under the control of sophisticated regulatory networks that integrate a large number of endogenous and environmental signals, including metabolic and nutritional cues. Puberty onset is tightly bound to the state of body energy reserves, and deregulation of energy/metabolic homeostasis is often associated with alterations in the timing of puberty. However, despite recent progress in the field, our knowledge of the specific molecular mechanisms and pathways whereby our brain decode metabolic information to modulate puberty onset remains fragmentary and incomplete. Compelling evidence, gathered over the last fifteen years, supports an essential role of hypothalamic neurons producing kisspeptins, encoded by Kiss1, in the neuroendocrine control of puberty. Kiss1 neurons are major components of the hypothalamic GnRH pulse generator, whose full activation is mandatory pubertal onset. Kiss1 neurons seemingly participate in transmitting the regulatory actions of metabolic cues on pubertal maturation. However, the modulatory influence of metabolic signals (e.g., leptin) on Kiss1 neurons might be predominantly indirect and likely involves also the interaction with other transmitters and neuronal populations. In my presentation, I will review herein recent work of our group, using preclinical models, addressing the molecular mechanisms whereby Kiss1 neurons are modulated by metabolic signals, and thereby contribute to the nutritional control of puberty. In this context, the putative roles of the energy/metabolic sensors, AMP-activated protein kinase (AMPK) and SIRT1, in the metabolic control of Kiss1 neurons and puberty will be discussed. In addition, I will summarize recent findings from our team pointing out a role of central de novo ceramide signaling in mediating the impact of obesity of (earlier) puberty onset, via non-canonical, kisspeptin-related pathways. These findings are posed of translational interest, as perturbations of these molecular pathways could contribute to the alterations of pubertal timing linked to conditions of metabolic stress in humans, ranging from malnutrition to obesity, and might become druggable targets for better management of pubertal disorders.

SeminarNeuroscience

Thalamocortical circuits from neuroanatomy to mental representations

Mathieu Wolff
INCIA - University of Bordeaux / CNRS
May 27, 2021

In highly volatile environments, performing actions that address current needs and desires is an ongoing challenge for living organisms. For example, the predictive value of environmental signals needs to be updated when predicted and actual outcomes differ. Furthermore, organisms also need to gain control over the environment through actions that are expected to produce specific outcomes. The data to be presented will show that these processes are highly reliant on thalamocortical circuits wherein thalamic nuclei make a critical contribution to adaptive decision-making, challenging the view that the thalamus only acts as a relay station for the cortical stage. Over the past few years, our work has highlighted the specific contribution of multiple thalamic nuclei in the ability to update the predictive link between events or the causal link between actions and their outcomes via the combination of targeted thalamic interventions (lesion, chemogenetics, disconnections) with behavioral procedures rooted in experimental psychology. We argue that several features of thalamocortical architecture are consistent with a prominent role for thalamic nuclei in shaping mental representations.

SeminarPhysics of LifeRecording

Trapping active particles up to the limiting case: bacteria enclosed in a biofilm

Chantal Valeriani
Complutense Madrid
May 25, 2021

Active matter systems are composed of constituents, each one in nonequilibrium, that consume energy in order to move [1]. A characteristic feature of active matter is collective motion leading to nonequilibrium phase transitions or large scale directed motion [2]. A number of recent works have featured active particles interacting with obstacles, either moving or fixed [3,4,5]. When an active particle encounters an asymmetric obstacle, different behaviours are detected depending on the nature of its active motion. On the one side, rectification effects arise in a suspension of run-and-tumble particles interacting with a wall of funnelled-shaped openings, caused by particles persistence length [6]. The same trapping mechanism could be responsible for the intake of microorganisms in the underground leaves [7] of Carnivorous plants [8]. On the other side, for aligning particles [9] interacting with a wall of funnelled-shaped openings, trapping happens on the (opposite) wider opening side of the funnels [10,11]. Interestingly, when funnels are located on a circular array, trapping is more localised and depends on the nature of the Vicsek model. Active particles can be synthetic (such as synthetic active colloids) or alive (such as living bacteria). A prototypical model to study living microswimmers is P. fluorescens, a rod shaped and biofilm forming bacterium. Biofilms are microbial communities self-assembled onto external interfaces. Biofilms can be described within the Soft Matter physics framework [12] as a viscoelastic material consisting of colloids (bacterial cells) embedded in a cross-linked polymer gel (polysaccharides cross-linked via proteins/multivalent cations), whose water content vary depending on the environmental conditions. Bacteria embedded in the polymeric matrix control biofilm structure and mechanical properties by regulating its matrix composition. We have recently monitored structural features of Pseudomonas fluorescens biofilms grown with and without hydrodynamic stress [13,14]. We have demonstrated that bacteria are capable of self-adapting to hostile hydrodynamic stress by tailoring the biofilm chemical composition, thus affecting both the mesoscale structure of the matrix and its viscoelastic properties that ultimately regulate the bacteria-polymer interactions. REFERENCES [1] C. Bechinger et al. Rev. Mod. Phys. 88, 045006 (2016); [2] T. Vicsek, A. Zafeiris Phys. Rep. 517, 71 (2012); [3] C. Bechinger, R. Di Leonardo, H. Lowen, C. Reichhardt, G. Volpe, and G. Volpe, Reviews of Modern Physics 88, 045006 (2016); [4] R Martinez, F Alarcon, DR Rodriguez, JL Aragones, C Valeriani The European Physical Journal E 41, 1 (2018); [5] DR Rodriguez, F Alarcon, R Martinez, J Ramírez, C Valeriani, Soft matter 16 (5), 1162 (2020); [6] C. O. Reichhardt and C. Reichhardt, Annual Review of Condensed Matter
Physics 8, 51 (2017); [7] W Barthlott, S Porembski, E Fischer, B Gemmel Nature 392, 447 (1998); [8] C B. Giuliano, R Zhang, R.Martinez Fernandez, C.Valeriani and L.Wilson (in preparation, 2021); [9] R Martinez, F Alarcon, JL Aragones, C Valeriani Soft matter 16 (20), 4739 (2020); [10] P. Galajada, J. Keymer, P. Chaikin and R.Austin, Journal of bacteriology, 189, 8704 (2007); [11] M. Wan, C.O. Reichhardt, Z. Nussinov, and C. Reichhardt, Physical Review Letters 101, 018102 (2008); [12] J N. Wilking , T E. Angelini , A Seminara , M P. Brenner , and D A. Weitz MRS Bulletin 36, 385 (2011); [13]J Jara, F Alarcón, A K Monnappa, J Ignacio Santos, V Bianco, P Nie, M Pica Ciamarra, A Canales, L Dinis, I López-Montero, C Valeriani, B Orgaz, Frontiers in microbiology 11, 3460 (2021); [14] P Nie, F Alarcon, I López-Montero, B Orgaz, C Valeriani, M Pica Ciamarra

SeminarNeuroscience

The neuroecological context of group living

Sean O'Donnell
Drexel University
May 3, 2021

Dr. Sean O'Donnell is a Professor of Biodiversity Earth & Environmental Science at Drexel University, USA. His neuroscience research focuses on how brain structure plasticity & evolution are affected by social behavior, mainly using insects as models. He is also interested in tropical ecology & thermal physiology. He conducts field research & teaches field courses in Central & South America, as well as in the Negev Desert in Israel.

SeminarNeuroscienceRecording

Unpacking Nature from Nurture: Understanding how Family Processes Affect Child and Adolescent Mental Health

Gordon Harold
Faculty of Education, University of Cambridge
Apr 26, 2021

Mental Health problems among youth constitutes an area of significant social, educational, clinical, policy and public health concern. Understanding processes and mechanisms that underlie the development of mental health problems during childhood and adolescence requires theoretical and methodological integration across multiple scientific domains, including developmental science, neuroscience, genetics, education and prevention science. The primary focus of this presentation is to examine the relative role of genetic and family environmental influences on children’s emotional and behavioural development. Specifically, a complementary array of genetically sensitive and longitudinal research designs will be employed to examine the role of early environmental adversity (e.g. inter-parental conflict, negative parenting practices) relative to inherited factors in accounting for individual differences in children’s symptoms of psychopathology (e.g. depression, aggression, ADHD ). Examples of recent applications of this research to the development of evidence-based intervention programmes aimed at reducing psychopathology in the context of high-risk family settings will also be presented.

SeminarPsychology

Markers of brain connectivity and sleep-dependent restoration: basic research and translation into clinical populations

Valeria Jaramillo
University Hospital Zurich
Feb 24, 2021

The human brain is a heavily interconnected structure giving rise to complex functions. While brain functionality is mostly revealed during wakefulness, the sleeping brain might offer another view into physiological and pathological brain connectivity. Furthermore, there is a large body of evidence supporting that sleep mediates plastic changes in brain connectivity. Although brain plasticity depends on environmental input which is provided in the waking state, disconnection during sleep might be necessary for integrating new into existing information and at the same time restoring brain efficiency. In this talk, I will present structural, molecular, and electrophysiological markers of brain connectivity and sleep-dependent restoration that we have evaluated using Magnetic Resonance Imaging and electroencephalography in a healthy population. In a second step, I will show how we translated the gained findings into two clinical populations in which alterations in brain connectivity have been described, the neuropsychiatric disorder attention-deficit/hyperactivity disorder (ADHD) and the neurologic disorder thalamic ischemic stroke.

SeminarNeuroscience

Toward an understanding of the impact of prenatal exposure to environmental contaminants on brain development

Dave Saint-Amour
Université de Montréal, Canada
Feb 14, 2021

The risks of in utero and early exposure to environmental contaminants, such as heavy metals and persistent organic pollutants, on child neurodevelopment is now established, however our understanding of how these contaminants alter the human brain is very limited. To address this issue, more effort must be made to integrate brain imaging tools with epidemiological studies. In this seminar, I will be presenting EEG and MRI data collected in birth-cohort studies where impairments of cognitive and sensory functions were observed in association with prenatal exposure to mercury, lead, PCB or organophosphate insecticides. Results obtained in children and adolescents suggest that each pollutant might affect different levels of brain processing and that frontal regions are particularly vulnerable.

SeminarNeuroscience

Role of Oxytocin in regulating microglia functions to prevent brain damage of the developing brain

Olivier Baud
Division of Neonatology, Department of Pediatrics, Development and growth laboratory, University of Geneva, Switzerland
Feb 1, 2021

Every year, 30 million infants worldwide are delivered after intra-uterine growth restriction (IUGR) and 15 million are born preterm. These two conditions are the leading causes of ante/perinatal stress and brain injury responsible for neurocognitive and behavioral disorders in more than 9 million children each year. Both prematurity and IUGR are associated with perinatal systemic inflammation, a key factor associated with neuroinflammation and identified to be the best predictor of subsequent neurological impairments. Most of pharmacological candidates have failed to demonstrate any beneficial effect to prevent perinatal brain damage. In contrast, environmental enrichment based on developmental care, skin-to-skin contact and vocal/music intervention appears to confer positive effects on brain structure and function. However, mechanisms underlying these effects remain unknown. There is strong evidence that an adverse environment during pregnancy and the perinatal period can influence hormonal responses of the newborn with long-lasting neurobehavioral consequences in infancy and adulthood. Excessive cortisol release in response to perinatal stress induces pro-inflammatory and brain-programming effects. These deleterious effects are known to be balanced by Oxytocin (OT), a neuropeptide playing a key role during the perinatal period and parturition, in social behavior and regulating the central inflammatory response to injury in the adult brain. Using a rodent model of IUGR associated with perinatal brain damage, we recently reported that Carbetocin, a brain permeable long-lasting OT receptor (OTR) agonist, was associated with a significant reduction of activated microglia, the primary immune cells of the brain. Moreover this reduced microglia reactivity was associated to a long-term neuroprotection. These findings make OT a promising candidate for neonatal neuroprotection through neuroinflammation regulation. However, the causality between the endogenous OT and central inflammation response to injury has not been established and will be further studied by the lab.

SeminarPhysics of LifeRecording

The physics of cement cohesion

Emanuela Del Gado
Georgetown University
Jan 26, 2021

Cement is the main binding agent in concrete, literally gluing together rocks and sand into the most-used synthetic material on Earth. However, cement production is responsible for significant amounts of man- made greenhouse gases—in fact if the cement industry were a country, it would be the third largest emitter in the world. Alternatives to the current, environmentally harmful cement production process are not available essentially because the gaps in fundamental understanding hamper the development of smarter and more sustainable solutions. The ultimate challenge is to link the chemical composition of cement grains to the nanoscale physics of the cohesive forces that emerge when mixing cement with water. Cement nanoscale cohesion originates from the electrostatics of ions accumulated in a water-based solution between like-charged surfaces but it is not captured by existing theories because of the nature of the ions involved and the high surface charges. Surprisingly enough, this is also the case for unexplained cohesion in a range of colloidal and biological matter. About one century after the early studies of cement hydration, we have quantitatively solved this notoriously hard problem and discovered how cement cohesion develops during hydration. I will discuss how 3D numerical simulations that feature a simple but molecular description of ions and water, together with an analytical theory that goes beyond the traditional continuum approximations, helped us demonstrate that the optimized interlocking of ion-water structures determine the net cohesive forces and their evolution. These findings open the path to scientifically grounded strategies of material design for cements and have implications for a much wider range of materials and systems where ionic water-based solutions feature both strong Coulombic and confinement effects, ranging from biological membranes to soils. Construction materials are central to our society and to our life as humans on this planet, but usually far removed from fundamental science. We can now start to understand how cement physical-chemistry determines performance, durability and sustainability.

ePoster

Environmental complexity modulates the arbitration between deliberative and habitual decision-making

COSYNE 2022

ePoster

Environmental Statistics of Temporally Ordered Stimuli Modify Activity in the Primary Visual Cortex

COSYNE 2022

ePoster

Learning representations of environmental priors in visual working memory

Tahra Eissa & Zachary Kilpatrick

COSYNE 2023

ePoster

Disrupted Egocentric Vector Coding of Environmental Geometry in Alzheimer’s Disease Mouse Model

Yoonsoo Yeo, Jeehyun Kwag

COSYNE 2025

ePoster

A novel behavioral paradigm in mice for studying learning of environmental structures

Yunchang Zhang, Ilana Witten, Yotam Sagiv, Stefan Oline, Nathaniel Daw

COSYNE 2025

ePoster

Retrosplenial Parvalbumin Interneurons Gate the Egocentric Vector Coding of Environmental Geometry

Jiyeon Yang, Jeehyun Kwag

COSYNE 2025

ePoster

Distributed encoding of motor commands mediates response to environmental confinement and escape from predators

Stephanie Josephine Eder, Itamar Lev, Manuel Zimmer

FENS Forum 2024

ePoster

Effect of environmental enrichment on neuroplasticity

Katja Kaurinkoski, Madhusmita Priyadarshini Sahu, Eero Castrén

FENS Forum 2024

ePoster

Environmental enrichment effects on hippocampal microglia and adult neurogenesis

Jorge Valero, Teresa Cocho, Sara Sánchez-Monreal, Noelia Rodriguez-Iglesias, Amanda Sierra, Carmelo Ávila-Zarza, Eduardo Weruaga, José Ramón Alonso

FENS Forum 2024

ePoster

Environmental enrichment increases lateral inhibition in the hippocampus

Stylianos Kouvaros, Ekaterina Verdiyan, Josef Bischofberger

FENS Forum 2024

ePoster

Environmental enrichment promotes sparse coding in hippocampus via increased dendritic inhibition

Ekaterina Verdiyan, Stylianos Kouvaros, Josef Bischofberger

FENS Forum 2024

ePoster

Environmental enrichment reduces anxiety-like behavior and changes the microbial community composition of mice

Isabella Faimann, Eva Tatzl, Christine Moissl-Eichinger, Florian Reichmann

FENS Forum 2024

ePoster

A hippocampal-hypothalamic circuit for the processing of environmental cues during agonistic encounters

Alisson Pinto de Almeida, Alicia Moraes Tamais, Daniel França de Lima, Davy Queiroz Viana, Pablo Vinicius Ruivo, Simone Cristina Motta

FENS Forum 2024

ePoster

Microglia brainization: Intrinsic and environmental cues controlling developmental microglia maturation

Joel Maldonado-Teixido, Marta Pereira-Iglesias, Ainhoa Plaza-Zabala, Alice Louail, Sol Beccari, Jorge Valero, Fernando Garcia-Moreno, Yasmina Manso, Wiebke Mildenberger, Olga Peñagarikano, Melanie Greter, Eduardo Soriano, Amanda Sierra

FENS Forum 2024

ePoster

Modulation of brain activity by environmental design: A study using EEG and virtual reality

Jesus S. Garcia Salinas, Anna Wroblewska, Katarzyna Zielonko-Jung, Michał Kucewicz

FENS Forum 2024

ePoster

A neurocomputational approach for effort-based decision-making: Comparing self and environmental motivation

Boryana Todorova, Kimberly Doell, Ronald Sladky, Claus Lamm

FENS Forum 2024

ePoster

Sex-based differences in a mouse model of experimental colitis housed in environmental enrichment

Giulia Petracco, Eva Tatzl, Isabella Faimann, Florian Reichmann

FENS Forum 2024

ePoster

Synaptic neurofilaments changes during aging and the effect of environmental enrichment

Elisa Principi, Marta Balietti, Giorgia Fattorini, Fiorenzo Conti

FENS Forum 2024

ePoster

Toxic effects of environmentally-relevant exposure to polyethylene terephthalate (PET) micro and nanoparticles in zebrafish early development

Mauricio Reis Bogo, Lilian de Souza Teodoro, Camilo Alexandre Jablonski, Kauê Pelegrini, Talita Carneiro Brandão Pereira, Thuany Garcia Maraschin, Alan Carvalho de Sousa Araujo, Jose Maria Monserrat, Nara Regina de Souza Basso, Luiza Wilges Kist

FENS Forum 2024

ePoster

Unraveling human escape planning: The impact of environmental cues on escape behavior in VR

Lukas Kornemann, Sajjad Zabbah, Yonatan Hutabarat, Dominik R. Bach

FENS Forum 2024