← Back

Epilepsies

Topic spotlight
TopicWorld Wide

epilepsies

Discover seminars, jobs, and research tagged with epilepsies across World Wide.
17 curated items17 Seminars
Updated about 2 years ago
17 items · epilepsies
17 results
SeminarNeuroscienceRecording

Neuroinflammation in Epilepsy: what have we learned from human brain tissue specimens ?

Eleonora Aronica
Amsterdam UMC
Oct 24, 2023

Epileptogenesis is a gradual and dynamic process leading to difficult-to-treat seizures. Several cellular, molecular, and pathophysiologic mechanisms, including the activation of inflammatory processes.  The use of human brain tissue represents a crucial strategy to advance our understanding of the underlying neuropathology and the molecular and cellular basis of epilepsy and related cognitive and behavioral comorbidities,  The mounting evidence obtained during the past decade has emphasized the critical role of inflammation  in the pathophysiological processes implicated in a large spectrum of genetic and acquired forms of  focal epilepsies. Dissecting the cellular and molecular mediators of  the pathological immune responses and their convergent and divergent mechanisms, is a major requisite for delineating their role in the establishment of epileptogenic networks. The role of small regulatory molecules involved in the regulation of  specific pro- and anti-inflammatory pathways  and the crosstalk between neuroinflammation and oxidative stress will be addressed.    The observations supporting the activation of both innate and adaptive immune responses in human focal epilepsy will be discussed and elaborated, highlighting specific inflammatory pathways as potential targets for antiepileptic, disease-modifying therapeutic strategies.

SeminarNeuroscience

Investigating activity-dependent processes in cerebral cortex development and disease

Simona Lodato
Humanitas University
Jul 19, 2022

The cerebral cortex contains an extraordinary diversity of excitatory projection neuron (PN) and inhibitory interneurons (IN), wired together to form complex circuits. Spatiotemporally coordinated execution of intrinsic molecular programs by PNs and INs and activity-dependent processes, contribute to cortical development and cortical microcircuits formation. Alterations of these delicate processes have often been associated to neurological/neurodevelopmental disorders. However, despite the groundbreaking discovery that spontaneous activity in the embryonic brain can shape regional identities of distinct cortical territories, it is still unclear whether this early activity contributes to define subtype-specific neuronal fate as well as circuit assembly. In this study, we combined in utero genetic perturbations via CRISPR/Cas9 system and pharmacological inhibition of selected ion channels with RNA-sequencing and live imaging technologies to identify the activity-regulated processes controlling the development of different cortical PN classes, their wiring and the acquisition of subtype specific features. Moreover, we generated human induced pluripotent stem cells (iPSCs) form patients affected by a severe, rare and untreatable form of developmental epileptic encephalopathy. By differentiating cortical organoids form patient-derived iPSCs we create human models of early electrical alterations for studying molecular, structural and functional consequences of the genetic mutations during cortical development. Our ultimate goal is to define the activity-conditioned processes that physiologically occur during the development of cortical circuits, to identify novel therapeutical paths to address the pathological consequences of neonatal epilepsies.

SeminarNeuroscience

The role of astroglia-neuron interactions in generation and spread of seizures

Emre Yaksi
Kavli Institute for Systems Neuroscience, Norwegian University of Science and technology
Jul 5, 2022

Astroglia-neuron interactions are involved in multiple processes, regulating development, excitability and connectivity of neural circuits. Accumulating number of evidences highlight a direct connection between aberrant astroglial genetics and physiology in various forms of epilepsies. Using zebrafish seizure models, we showed that neurons and astroglia follow different spatiotemporal dynamics during transitions from pre-ictal to ictal activity. We observed that during pre-ictal period neurons exhibit local synchrony and low level of activity, whereas astroglia exhibit global synchrony and high-level of calcium signals that are anti correlated with neural activity. Instead, generalized seizures are marked by a massive release of astroglial glutamate release as well as a drastic increase of astroglia and neuronal activity and synchrony across the entire brain. Knocking out astroglial glutamate transporters leads to recurrent spontaneous generalized seizures accompanied with massive astroglial glutamate release. We are currently using a combination of genetic and pharmacological approaches to perturb astroglial glutamate signalling and astroglial gap junctions to further investigate their role in generation and spreading of epileptic seizures across the brain.

SeminarNeuroscience

MicroRNAs as targets in the epilepsies: hits, misses and complexes

David Henshall
The Royal College of Surgeons in Ireland
May 3, 2022

MicroRNAs are small noncoding RNAs that provide a critical layer of gene expression control. Individual microRNAs variably exert effects across networks of genes via sequence-specific binding to mRNAs, fine-tuning protein levels. This helps coordinate the timing and specification of cell fate transitions during brain development and maintains neural circuit function and plasticity by activity-dependent (re)shaping of synapses and the levels of neurotransmitter components. MicroRNA levels have been found to be altered in tissue from the epileptogenic zone resected from adults with drug-resistant focal epilepsy and this has driven efforts to explore their therapeutic potential, in particular using antisense oligonucleotide (ASOs) inhibitors termed antimirs. Here, we review the molecular mechanisms by which microRNAs control brain excitability and the latest progress towards a microRNA-based treatment for temporal lobe epilepsy. We also look at whether microRNA-based approaches could be used to treat genetic epilepsies, correcting individual genes or dysregulated pathways. Finally, we look at how cells have evolved to maximise the efficiency of the microRNA system via RNA editing, where single base changes is capable of altering the repertoire of genes under the control of a single microRNA. The findings improve our understanding of the molecular landscape of the epileptic brain and may lead to new therapies.

SeminarNeuroscience

Epileptogenesis in the developing brain:understanding a moving target

Tallie Z Baram
University of California-Irvine
Apr 5, 2022

The origins, mechanisms and consequences of epilepsy in the developing brain are incompletely understood. Many developmental epilepsies have a genetic basis and their mechanisms stem from deficits in the function of one or numerous genes. Others, such as those that follow prolonged febrile seizures or severe birth asphyxia in a ‘normal’ brain may depend on the interaction of the insult with the rapidly evolving brain cells and circuits. Yet, how early-life insults may provoke epilepsy is unclear, and requires multiple levels of analysis: behavior, circuits, cells [neurons, glia] and molecules. Here we discuss developmental epileptogenesis, addressing some of its special features: the epilepsy phenotype, the effects insults on the maturation of brain circuits, the role of neuron-glia-neuron communication in cellular and circuit refinement, and how transient epileptogenic insults provoke enduring changes in the structure, connectivity and function of salient neuronal populations. We will highlight resolved questions- and the many unresolved issues that require tackling in 2022 and beyond.

SeminarNeuroscience

Epilepsy Genetics – From Family Studies to Polygenic Risk Scores

Sam Berkovic
University of Melbourne
Jan 19, 2022

Whilst epilepsy may be a consequence of an acquired insult including trauma, stroke, and brain tumours, the genetic component to epilepsies has been greatly under-estimated. Considerable progress has recently occurred in the understanding of epilepsy genetics, both at a clinical genetic level and in the basic science of epilepsies. The clinical evidence for genetic components will be first briefly discussed including data from population studies, twin analyses and multiplex family studies. Initial molecular discoveries occurred via classical methods of linkage and gene identification. Recent large-scale hypothesis-free whole exome studies searching for rare variants and genome-wide association studies detecting common variants have been very rewarding. These discoveries have now impacted on clinical practice, especially in severe childhood epilepsies but increasingly so in adult patients. The “genetic background” of patients has long been posited as part of the reason that some patients have epilepsy, or perhaps why some have more severe epilepsy. This has been unmeasurable but now, with the development of polygenic risk scores, the “background” is now in the research foreground. The current and future impact of polygenic risk scores will be explored.

SeminarNeuroscience

Stem cell approaches to understand acquired and genetic epilepsies

Jenny Hsieh
University of Texas at San Antonio
Nov 16, 2021

The Hsieh lab focuses on the mechanisms that promote neural stem cell self-renewal and differentiation in embryonic and adult brain. Using mouse models, video-EEG monitoring, viral techniques, and imaging/electrophysiological approaches, we elucidated many of the key transcriptional/epigenetic regulators of adult neurogenesis and showed aberrant new neuron integration in adult rodent hippocampus contribute to circuit disruption and seizure development. Building on this work, I will present our recent studies describing how GABA-mediated Ca2+ activity regulates the production of aberrant adult-born granule cells. In a new direction of my laboratory, we are using human induced pluripotent stem cells and brain organoid models as approaches to understand brain development and disease. Mutations in one gene, Aristaless-related homeobox (ARX), are of considerable interest since they are known to cause a common spectrum of neurodevelopmental disorders including epilepsy, autism, and intellectual disability. We have generated cortical and subpallial organoids from patients with poly-alanine expansion mutations in ARX. To understand the nature of ARX mutations in the organoid system, we are currently performing cellular, molecular, and physiological analyses. I will present these data to gain a comprehensive picture of the effect of ARX mutations in brain development. Since we do not understand how human brain development is affected by ARX mutations that contribute to epilepsy, we believe these studies will allow us to understand the mechanism of pathogenesis of ARX mutations, which has the potential to impact the diagnosis and care of patients.

SeminarNeuroscienceRecording

Mechanisms of CACNA1A-associated developmental epileptic encephalopathies

Elsa Rossignol
University of Montreal
Nov 2, 2021

Developmental epileptic encephalopathies are early-onset epilepsies, often refractory to therapy, with developmental delay or regression. These disorders carry poor neurodevelopmental prognosis, with long-term refractory epilepsy and persistent cognitive, behavioral and motor deficits. Mutations in the CACNA1A gene, encoding the pore-forming α1 subunit of CaV2.1 voltage-gated calcium channels, result in a spectrum of neurological disorders, including severe, early-onset epileptic encephalopathies. Recent work from the Rossignol lab helped characterize the phenotypic spectrum of CACNA1A-related epilepsies in humans. Using conditional genetics and novel animal models, the Rossignol lab unveiled some of the underlying pathophysiological mechanisms, including critical deficits in cortical inhibition, resulting in seizures and a range of cognitive-behavioral deficits. Importantly, Dr. Rossignol’s team demonstrated that the targeted activation of specific GABAergic interneuron populations in selected cortical regions prevents motor seizures and reverts attention deficits and cognitive rigidity in mouse models of the disorder. These recent findings open novel avenues for the treatment of these severe CACNA1A-associated neurodevelopmental disorders.

SeminarNeuroscienceRecording

Dancing to a Different Tune: TANGO Gives Hope for Dravet Syndrome

Lori Isom
University of Michigan
Oct 19, 2021

The long-term goal of our research is to understand the mechanisms of SUDEP, defined as Sudden, Unexpected, witnessed or unwitnessed, nontraumatic and non-drowning Death in patients with EPilepsy, excluding cases of documented status epilepticus. The majority of SUDEP patients die during sleep. SUDEP is the most devastating consequence of epilepsy, yet little is understood about its causes and no biomarkers exist to identify at risk patients. While SUDEP accounts for 7.5-20% of all epilepsy deaths, SUDEP risk in the genetic epilepsies varies with affected genes. Patients with ion channel gene variants have the highest SUDEP risk. Indirect evidence variably links SUDEP to seizure-induced apnea, pulmonary edema, dysregulation of cerebral circulation, autonomic dysfunction, and cardiac arrhythmias. Arrhythmias may be primary or secondary to hormonal or metabolic changes, or autonomic discharges. When SUDEP is compared to Sudden Cardiac Death secondary to Long QT Syndrome, especially to LQT3 linked to variants in the voltage-gated sodium channel (VGSC) gene SCN5A, there are parallels in the circumstances of death. To gain insight into SUDEP mechanisms, our approach has focused on channelopathies with high SUDEP incidence. One such disorder is Dravet syndrome (DS), a devastating form of developmental and epileptic encephalopathy (DEE) characterized by multiple pharmacoresistant seizure types, intellectual disability, ataxia, and increased mortality. While all patients with epilepsy are at risk for SUDEP, DS patients may have the highest risk, up to 20%, with a mean age at SUDEP of 4.6 years. Over 80% of DS is caused by de novo heterozygous loss-of-function (LOF) variants in SCN1A, encoding the VGSC Nav1.1  subunit, resulting in haploinsufficiency. A smaller cohort of patients with DS or a more severe DEE have inherited, homozygous LOF variants in SCN1B, encoding the VGSC 1/1B non-pore-forming subunits. A related DEE, Early Infantile EE (EIEE) type 13, is linked to de novo heterozygous gain-of-function variants in SCN8A, encoding the VGSC Nav1.6. VGSCs underlie the rising phase and propagation of action potentials in neurons and cardiac myocytes. SCN1A, SCN8A, and SCN1B are expressed in both the heart and brain of humans and mice. Because of this, we proposed that cardiac arrhythmias contribute to the mechanism of SUDEP in DEE. We have taken a novel approach to the development of therapeutics for DS in collaboration with Stoke Therapeutics. We employed Targeted Augmentation of Nuclear Gene Output (TANGO) technology, which modulates naturally occurring, non-productive splicing events to increase target gene and protein expression and ameliorate disease phenotype in a mouse model. We identified antisense oligonucleotides (ASOs) that specifically increase the expression of productive Scn1a transcript in human and mouse cell lines, as well as in mouse brain. We showed that a single intracerebroventricular dose of a lead ASO at postnatal day 2 or 14 reduced the incidence of electrographic seizures and SUDEP in the F1:129S-Scn1a+/- x C57BL/6J mouse model of DS. Increased expression of productive Scn1a transcript and NaV1.1 protein were confirmed in brains of treated mice. Our results suggest that TANGO may provide a unique, gene-specific approach for the treatment of DS.

SeminarNeuroscienceRecording

Using Human Stem Cells to Uncover Genetic Epilepsy Mechanisms

Jack Parent
University of Michigan Medical School.
Jul 20, 2021

Reprogramming somatic cells to a pluripotent state via the induced pluripotent stem cell (iPSC) method offers an increasingly utilized approach for neurological disease modeling with patient-derived cells. Several groups, including ours, have applied the iPSC approach to model severe genetic developmental and epileptic encephalopathies (DEEs) with patient-derived cells. Although most studies to date involve 2-D cultures of patient-derived neurons, brain organoids are increasingly being employed to explore genetic DEE mechanisms. We are applying this approach to understand PMSE (Polyhydramnios, Megalencephaly and Symptomatic Epilepsy) syndrome, Rett Syndrome (in collaboration with Ben Novitch at UCLA) and Protocadherin-19 Clustering Epilepsy (PCE). I will describe our findings of robust structural phenotypes in PMSE and PCE patient-derived brain organoid models, as well as functional abnormalities identified in fusion organoid models of Rett syndrome. In addition to showing epilepsy-relevant phenotypes, both 2D and brain organoid cultures offer platforms to identify novel therapies. We will also discuss challenges and recent advances in the brain organoid field, including a new single rosette brain organoid model that we have developed. The field is advancing rapidly and our findings suggest that brain organoid approaches offers great promise for modeling genetic neurodevelopmental epilepsies and identifying precision therapies.

SeminarNeuroscience

Mechanisms and precision therapies in genetic epilepsies

Holger Lerche
Hertie Institute for Clinical Brain Research
Jul 6, 2021

Large scale genetic studies and associated functional investigations have tremendously augmented our knowledge about the mechanisms underlying epileptic seizures, and sometimes also accompanying developmental problems. Pharmacotherapy of the epilepsies is routinely guided by trial and error, since predictors for a response to specific antiepileptic drugs are largely missing. The recent advances in the field of genetic epilepsies now offer an increasing amount of either well fitting established or new re-purposing therapies for genetic epilepsy syndromes based on understanding of the pathophysiological principles. Examples are provided by variants in ion channel or transporter encoding genes which cause a broad spectrum of epilepsy syndromes of variable severity and onset, (1) the ketogenic diet for glucose transporter defects of the blood-brain barrier, (2) Na+ channel blockers (e.g. carbamazepine) for gain-of-function Na+ channel mutations and avoidance of those drugs for loss-of-function mutations, and (3) specific K+ channel blockers for mutations with a gain-of-function defect in respective K+ channels. I will focus in my talk on the latter two including the underlying mechanisms, their relation to clinical phenotypes and possible therapeutic implications. In conclusion, genetic and mechanistic studies offer promising tools to predict therapeutic effects in rare epilepsies.

SeminarNeuroscience

SCN1A/Nav1.1 sodium channel: loss and gain of function in epilepsy and migraine

Massimo Mantegazza
Institute of Molecular and Cellular Pharmacology (IPMC) CNRS UMR7275 and University Côte d'Azur
Apr 20, 2021

Genetic mutations of the SCN1A gene, the voltage gated sodium channel NaV1.1, cause well-defined epilepsies, including the severe developmental and epileptic encephalopathy Dravet syndrome and genetic epilepsy with febrile seizures plus (GEFS+), as well as a severe form of migraine with aura, familial hemiplegic migraine (FHM). More recently, they have been identified in an extremely severe early infantile encephalopathy. Functional studies and animal models have contributed to disclose pathological mechanisms, which can be often linked to a straightforward loss- vs gain- of channel function. However, although this simple dichotomy is pertinent and useful, detailed pathological mechanisms in neuronal circuits can be more complex, sometimes because of unexpected homeostatic or pathologic responses. I will compare pathological mechanisms of epilepsy and migraine mutations studied with cellular, animal and computational models, highlighting a novel homeostatic response implemented by CCK-positive GABAergic neurons in a mouse model of Dravet syndrome, which may be boosted in therapeutic approaches.

SeminarNeuroscience

Translational upregulation of STXBP1 by non-coding RNAs as an innovative treatment for STXBP1 encephalopathy

Federico Zara & Ganna Balagura
Institute G. Gaslini, University of Genoa
Mar 16, 2021

Developmental and epileptic encephalopathies (DEEs) are a broad spectrum of genetic epilepsies associated with impaired neurological development as a direct consequence of a genetic mutation, in addition to the effect of the frequent epileptic activity on brain. Compelling genetic studies indicate that heterozygous de novo mutations represent the most common underlying genetic mechanism, in accordance with the sporadic presentation of DEE. De novo mutations may exert a loss-of-function (LOF) on the protein by decrementing expression level and/or activity, leading to functional haploinsufficiency. These diseases share several features: severe and frequent refractory seizures, diffusely abnormal background activity on EEG, intellectual disability often profound, and severe consequences on global development. One of major causes of early onset DEE are de novo heterozygous mutations in syntaxin-binding-protein-1 gene STXBP1, which encodes a membrane trafficking protein playing critical role in vesicular docking and fusion. LOF STXBP1 mutations lead to a failure of neurotransmitter secretion from synaptic vesicles. Core clinical features of STXBP1 encephalopathy include early-onset epilepsy with hypsarrhythmic EEG, or burst-suppression pattern, or multifocal epileptiform activity. Seizures are often resistant to standard treatments and patients typically show intellectual disability, mostly severe to profound. Additional neurologic features may include autistic traits, movement disorders (dyskinesia, dystonia, tremor), axial hypotonia, and ataxia, indicating a broader neurologic impairment. Patients with severe neuro-cognitive features but without epilepsy have been reported. Recently, a new class of natural and synthetic non-coding RNAs have been identified, enabling upregulation of protein translation in a gene-specific way (SINEUPs), without any increase in mRNA of the target gene. SINEUPs are translational activators composed by a Binding Domain (BD) that overlaps, in antisense orientation, to the sense protein-coding mRNA, and determines target selection; and an Effector Domain (ED), that is essential for protein synthesis up regulation. SINEUPs have been shown to restore the physiological expression of a protein in case of haploinsufficiency, without driving excessive overexpression out of the physiological range. This technology brings many advantages, as it mainly acts on endogenous target mRNAs produced in situ by the wild-type allele; this action is limited to mRNA under physiological regulation, therefore no off-site effects can be expected in cells and tissues that do not express the target transcript; by acting only on a posttranscriptional level, SINEUPs do not trigger hereditable genome editing. After bioinformatic analysis of the promoter region of interest, we designed SINEUPs with 3 different BD for STXBP1. Human neurons from iPSCs were treated and STXBP1 levels showed a 1.5-fold increase compared to the Negative control. RNA levels of STXBP1 after the administration of SINEUPs remained stable as expected. These preliminary results proved the SINEUPs potential to specifically increase the protein levels without impacting on the genome. This is an extremely flexible approach to target many developmental and epileptic encephalopathies caused by haploinsufficiency, and therefore to address these diseases in a more tailored and radical way.

SeminarNeuroscience

Vulnerable periods of brain development in ion channelopathies

Dirk Isbrandt
Deutsches Zentrum fur Neurodegenerative Erkrankunngen
Dec 15, 2020

Brain and neuronal network development depend on a complex sequence of events, which include neurogenesis, migration, differentiation, synaptogenesis, and synaptic pruning. Perturbations to any of these processes, for example associated with ion channel gene mutations (i.e., channelopathies), can underlie neurodevelopmental disorders such as neonatal and infantile epilepsies, strongly impair psychomotor development and cause persistent deficits in cognition, motor skills, or motor control. The therapeutic options available are very limited, and prophylactic therapies for patients at an increased risk of developing such epilepsies do not exist yet. By using genetic mouse models in which we controlled the activities of Kv7/M or HCN/h-channels during different developmental periods, we obtained offspring with distinct neurological phenotypes that could not simply be reversed by the re-introduction of the affected ion channel in juvenile or adult animals. The results indicate that channelopathy/mutation-specific treatments of neonatal and infantile epilepsies and their comorbidities need to be targeted to specific sensitive periods.

SeminarNeuroscience

K+ Channel Gain of Function in Epilepsy, from Currents to Networks

Matthew Weston
University of Vermont
Oct 20, 2020

Recent human gene discovery efforts show that gain-of-function (GOF) variants in the KCNT1gene, which encodes a Na+-activated K+ channel subunit, cause severe epilepsies and other neurodevelopmental disorders. Although the impact of these variants on the biophysical properties of the channels is well characterized, the mechanisms that link channel dysfunction to cellular and network hyperexcitability and human disease are unknown. Furthermore, precision therapies that correct channel biophysics in non-neuronal cells have had limited success in treating human disease, highlighting the need for a deeper understanding of how these variants affect neurons and networks. To address this gap, we developed a new mouse model with a pathogenic human variant knocked into the mouse Kcnt1gene. I will discuss our findings on the in vivo phenotypes of this mouse, focusing on our characterization of epileptiform neural activity using electrophysiology and widefield Ca++imaging. I will also talk about our investigations at the synaptic, cellular, and circuit levels, including the main finding that cortical inhibitory neurons in this model show a reduction in intrinsic excitability and action potential generation. Finally, I will discuss future directions to better understand the mechanisms underlying the cell-type specific effects, as well as the link between the cellular and network level effects of KCNT1 GOF.

SeminarNeuroscienceRecording

Developmental origins and emerging therapeutic perspectives in genetic epilepsies

Stéphanie Baulac
Institut du Cerveau et de la Moëlle
Jul 22, 2020