Ethical Concerns
ethical concerns
Dr. Robert Legenstein
For the recently established Cluster of Excellence CoE Bilateral Artificial Intelligence (BILAI), funded by the Austrian Science Fund (FWF), we are looking for more than 50 PhD students and 10 Post-Doc researchers (m/f/d) to join our team at one of the six leading research institutions across Austria. In BILAI, major Austrian players in Artificial Intelligence (AI) are teaming up to work towards Broad AI. As opposed to Narrow AI, which is characterized by task-specific skills, Broad AI seeks to address a wide array of problems, rather than being limited to a single task or domain. To develop its foundations, BILAI employs a Bilateral AI approach, effectively combining sub-symbolic AI (neural networks and machine learning) with symbolic AI (logic, knowledge representation, and reasoning) in various ways. Harnessing the full potential of both symbolic and sub-symbolic approaches can open new avenues for AI, enhancing its ability to solve novel problems, adapt to diverse environments, improve reasoning skills, and increase efficiency in computation and data use. These key features enable a broad range of applications for Broad AI, from drug development and medicine to planning and scheduling, autonomous traffic management, and recommendation systems. Prioritizing fairness, transparency, and explainability, the development of Broad AI is crucial for addressing ethical concerns and ensuring a positive impact on society. The research team is committed to cross-disciplinary work in order to provide theory and models for future AI and deployment to applications.
“Mind reading” with brain scanners: Facts versus science fiction
Every thought is associated with a unique pattern of brain activity. Thus, in principle, it should be possible to use these activity patterns as "brain fingerprints" for different thoughts and to read out what a person is thinking based on their brain activity alone. Indeed, using machine learning considerable progress has been made in such "brainreading" in recent years. It is now possible to decode which image a person is viewing, which film sequence they are watching, which emotional state they are in or which intentions they hold in mind. This talk will provide an overview of the current state of the art in brain reading. It will also highlight the main challenges and limitations of this research field. For example, mathematical models are needed to cope with the high dimensionality of potential mental states. Furthermore, the ethical concerns raised by (often premature) commercial applications of brain reading will also be discussed.