← Back

Experimental Work

Topic spotlight
TopicWorld Wide

experimental work

Discover seminars, jobs, and research tagged with experimental work across World Wide.
6 curated items6 Seminars
Updated almost 3 years ago
6 items · experimental work
6 results
SeminarNeuroscienceRecording

Indispensable for generating epileptic seizures: where, when, how?

Yujiang Wang
Newcastle University
Dec 13, 2022

In epilepsy research, a holy grail has been the identification and understanding of the "epileptogenic zone" - operationally defined as the (minimal) area or region of the brain is indispensible for the generation of epileptic seizures. The identification of the epileptogenic zone is particularly important for surgical treatments of focal epilepsy patients, but I will highlight some recent clinical, experimental and theoretical work showing that it is also fundamentally linked with our understanding of epilepsy and seizures. I will conclude with a proposal for an updated understanding of the epileptogenic zone and ictogenesis.

SeminarNeuroscienceRecording

A biologically plausible inhibitory plasticity rule for world-model learning in SNNs

Z. Liao
Columbia
Nov 9, 2022

Memory consolidation is the process by which recent experiences are assimilated into long-term memory. In animals, this process requires the offline replay of sequences observed during online exploration in the hippocampus. Recent experimental work has found that salient but task-irrelevant stimuli are systematically excluded from these replay epochs, suggesting that replay samples from an abstracted model of the world, rather than verbatim previous experiences. We find that this phenomenon can be explained parsimoniously and biologically plausibly by a Hebbian spike time-dependent plasticity rule at inhibitory synapses. Using spiking networks at three levels of abstraction–leaky integrate-and-fire, biophysically detailed, and abstract binary–we show that this rule enables efficient inference of a model of the structure of the world. While plasticity has previously mainly been studied at excitatory synapses, we find that plasticity at excitatory synapses alone is insufficient to accomplish this type of structural learning. We present theoretical results in a simplified model showing that in the presence of Hebbian excitatory and inhibitory plasticity, the replayed sequences form a statistical estimator of a latent sequence, which converges asymptotically to the ground truth. Our work outlines a direct link between the synaptic and cognitive levels of memory consolidation, and highlights a potential conceptually distinct role for inhibition in computing with SNNs.

SeminarNeuroscienceRecording

NMC4 Short Talk: Resilience through diversity: Loss of neuronal heterogeneity in epileptogenic human tissue impairs network resilience to sudden changes in synchrony

Scott Rich
Kremibl Brain Institute
Nov 30, 2021

A myriad of pathological changes associated with epilepsy, including the loss of specific cell types, improper expression of individual ion channels, and synaptic sprouting, can be recast as decreases in cell and circuit heterogeneity. In recent experimental work, we demonstrated that biophysical diversity is a key characteristic of human cortical pyramidal cells, and past theoretical work has shown that neuronal heterogeneity improves a neural circuit’s ability to encode information. Viewed alongside the fact that seizure is an information-poor brain state, these findings motivate the hypothesis that epileptogenesis can be recontextualized as a process where reduction in cellular heterogeneity renders neural circuits less resilient to seizure onset. By comparing whole-cell patch clamp recordings from layer 5 (L5) human cortical pyramidal neurons from epileptogenic and non-epileptogenic tissue, we present the first direct experimental evidence that a significant reduction in neural heterogeneity accompanies epilepsy. We directly implement experimentally-obtained heterogeneity levels in cortical excitatory-inhibitory (E-I) stochastic spiking network models. Low heterogeneity networks display unique dynamics typified by a sudden transition into a hyper-active and synchronous state paralleling ictogenesis. Mean-field analysis reveals a distinct mathematical structure in these networks distinguished by multi-stability. Furthermore, the mathematically characterized linearizing effect of heterogeneity on input-output response functions explains the counter-intuitive experimentally observed reduction in single-cell excitability in epileptogenic neurons. This joint experimental, computational, and mathematical study showcases that decreased neuronal heterogeneity exists in epileptogenic human cortical tissue, that this difference yields dynamical changes in neural networks paralleling ictogenesis, and that there is a fundamental explanation for these dynamics based in mathematically characterized effects of heterogeneity. These interdisciplinary results provide convincing evidence that biophysical diversity imbues neural circuits with resilience to seizure and a new lens through which to view epilepsy, the most common serious neurological disorder in the world, that could reveal new targets for clinical treatment.

SeminarNeuroscienceRecording

The Structural Anchoring of Spontaneous Analogies

Lucas Raynal / Dr Katarina Gvozdic
Cergy-Pontoise University / University of Geneva
Nov 11, 2020

It is generally acknowledged that analogy is a core mechanism of human cognition, but paradoxically, analogies based on structural similarities would rarely be implemented spontaneously (e.g. without an explicit invitation to compare two representations). The scarcity of deep spontaneous analogies is at odds with the demonstration that familiar concepts from our daily-life are spontaneously used to encode the structure of our experiences. Based on this idea, we will present experimental works highlighting the predominant role of structural similarities in analogical retrieval. The educational stakes lurking behind the tendency to encode the problem’s structures through familiar concepts will also be addressed.

SeminarNeuroscience

Computational models of neural development

Geoffrey J. Goodhill
The University of Queensland
Jul 20, 2020

Unlike even the most sophisticated current forms of artificial intelligence, developing biological organisms must build their neural hardware from scratch. Furthermore they must start to evade predators and find food before this construction process is complete. I will discuss an interdisciplinary program of mathematical and experimental work which addresses some of the computational principles underlying neural development. This includes (i) how growing axons navigate to their targets by detecting and responding to molecular cues in their environment, (ii) the formation of maps in the visual cortex and how these are influenced by visual experience, and (iii) how patterns of neural activity in the zebrafish brain develop to facilitate precisely targeted hunting behaviour. Together this work contributes to our understanding of both normal neural development and the etiology of neurodevelopmental disorders.