← Back

Firing Rate Homeostasis

Topic spotlight
TopicWorld Wide

firing rate homeostasis

Discover seminars, jobs, and research tagged with firing rate homeostasis across World Wide.
4 curated items4 Seminars
Updated almost 4 years ago
4 items · firing rate homeostasis
4 results
SeminarNeuroscience

Keeping your Brain in Balance: the Ups and Downs of Homeostatic Plasticity (virtual)

Gina Turrigiano, PhD
Professor, Department of Biology, Brandeis University, USA
Feb 16, 2022

Our brains must generate and maintain stable activity patterns over decades of life, despite the dramatic changes in circuit connectivity and function induced by learning and experience-dependent plasticity. How do our brains acheive this balance between opposing need for plasticity and stability? Over the past two decades, we and others have uncovered a family of “homeostatic” negative feedback mechanisms that are theorized to stabilize overall brain activity while allowing specific connections to be reconfigured by experience. Here I discuss recent work in which we demonstrate that individual neocortical neurons in freely behaving animals indeed have a homeostatic activity set-point, to which they return in the face of perturbations. Intriguingly, this firing rate homeostasis is gated by sleep/wake states in a manner that depends on the direction of homeostatic regulation: upward-firing rate homeostasis occurs selectively during periods of active wake, while downward-firing rate homeostasis occurs selectively during periods of sleep, suggesting that an important function of sleep is to temporally segregate bidirectional plasticity. Finally, we show that firing rate homeostasis is compromised in an animal model of autism spectrum disorder. Together our findings suggest that loss of homeostatic plasticity in some neurological disorders may render central circuits unable to compensate for the normal perturbations induced by development and learning.

SeminarNeuroscienceRecording

Combining two mechanisms to produce neural firing rate homeostasis

Paul Miller
Brandeis University
Jun 10, 2021

The typical goal of homeostatic mechanisms is to ensure a system operates at or in the vicinity of a stable set point, where a particular measure is relatively constant and stable. Neural firing rate homeostasis is unusual in that a set point of fixed firing rate is at odds with the goal of a neuron to convey information, or produce timed motor responses, which require temporal variations in firing rate. Therefore, for a neuron, a range of firing rates is required for optimal function, which could, for example, be set by a dual system that controls both mean and variance of firing rate. We explore, both via simulations and analysis, how two experimentally measured mechanisms for firing rate homeostasis can cooperate to improve information processing and avoid the pitfall of pulling in different directions when their set points do not appear to match.

SeminarNeuroscience

Firing Rate Homeostasis in Neural Circuits: From basic principles to malfunctions

Inna Slutsky
Tel Aviv University
Jun 2, 2021

Maintaining average activity level within a set-point range constitutes a fundamental property of central neural circuits. Accumulated evidence suggests that firing rate distributions and their means represent physiological variables regulated by homeostatic systems during sleep-wake cycle in central neural circuits. While intracellular Ca2+ has long been hypothesized as a feedback control signal, the source of Ca2+ and the molecular machinery enabling network-wide homeostatic responses remain largely unknown. I will present our hypothesis and framework on identifying homeostatic regulators in neural circuits. Next, I will show our new results on the role of mitochondria in the regulation of activity set-points and feedback responses. Finally, I will provide an evidence on state-dependent dysregulation of activity set-points at the presymptomatic disease stage in familial Alzheimer’s models.

SeminarNeuroscience

Firing Homeostasis in Neural Circuits: From Basic Principles to Malfunctions

Inna Slutsky
Tel Aviv University
Feb 18, 2021

Neural circuit functions are stabilized by homeostatic mechanisms at long timescales in response to changes in experience and learning. However, we still do not know which specific physiological variables are being stabilized, nor which cellular or neural-network components comprise the homeostatic machinery. At this point, most evidence suggests that the distribution of firing rates amongst neurons in a brain circuit is the key variable that is maintained around a circuit-specific set-point value in a process called firing rate homeostasis. Here, I will discuss our recent findings that implicate mitochondria as a central player in mediating firing rate homeostasis and its impairments. While mitochondria are known to regulate neuronal variables such as synaptic vesicle release or intracellular calcium concentration, we searched for the mitochondrial signaling pathways that are essential for homeostatic regulation of firing rates. We utilize basic concepts of control theory to build a framework for classifying possible components of the homeostatic machinery in neural networks. This framework may facilitate the identification of new homeostatic pathways whose malfunctions drive instability of neural circuits in distinct brain disorders.