← Back

Flocking

Topic spotlight
TopicWorld Wide

flocking

Discover seminars, jobs, and research tagged with flocking across World Wide.
3 curated items3 Seminars
Updated about 3 years ago
3 items · flocking
3 results
SeminarNeuroscienceRecording

A multi-level account of hippocampal function in concept learning from behavior to neurons

Rob Mok
University of Cambridge
Nov 1, 2022

A complete neuroscience requires multi-level theories that address phenomena ranging from higher-level cognitive behaviors to activities within a cell. Unfortunately, we don't have cognitive models of behavior whose components can be decomposed into the neural dynamics that give rise to behavior, leaving an explanatory gap. Here, we decompose SUSTAIN, a clustering model of concept learning, into neuron-like units (SUSTAIN-d; decomposed). Instead of abstract constructs (clusters), SUSTAIN-d has a pool of neuron-like units. With millions of units, a key challenge is how to bridge from abstract constructs such as clusters to neurons, whilst retaining high-level behavior. How does the brain coordinate neural activity during learning? Inspired by algorithms that capture flocking behavior in birds, we introduce a neural flocking learning rule to coordinate units that collectively form higher-level mental constructs ("virtual clusters"), neural representations (concept, place and grid cell-like assemblies), and parallels recurrent hippocampal activity. The decomposed model shows how brain-scale neural populations coordinate to form assemblies encoding concept and spatial representations, and why many neurons are required for robust performance. Our account provides a multi-level explanation for how cognition and symbol-like representations are supported by coordinated neural assemblies formed through learning.

SeminarPhysics of LifeRecording

Flocking through complex environments

Suraj Shankar
Harvard University
Jun 6, 2021

The spontaneous collective motion of self-propelled agents is ubiquitous in the natural world, and it often occurs in complex environments, be it bacteria and cells migrating through polymeric extracellular matrix or animal herds and human crowds navigating structured terrains. Much is known about flocking dynamics in pristine backgrounds, but how do spatio-temporal heterogeneities in the environment impact such collective self-organization? I will present two model systems, a colloidal active fluid negotiating disordered obstacles and a confined dense bacterial suspension in a viscoelastic medium, as controllable platforms to explore this question and highlight general mechanisms for active self-organization in complex environments. By combining theory and experiment, I will show how flocks on disordered substrates organize into a novel dynamic vortex glass phase, akin to vortex glasses in dirty superconductors, while the presence of viscoelasticity can calm the otherwise turbulent swarming of bacteria, allowing the emergence of a large scale coherent and even oscillatory vortex when confined on the millimetre scale.

SeminarPhysics of Life

Flocks and crowds: a Gulliver travel

Denis Bartolo
ENS de Lyon
May 4, 2021

In the first part of my talk, combining experimental, numerical and theoretical results, I will explain how self-propelled colloidal particles self-organize in one of the most robust ordered state found in nature: flocks. I will explain how to describe macroscopic flocking motion as the spontaneous flows of an active fluid, and use this framework to elucidate the phase ordering dynamics of polar active matter. In the second part of my talk, I will show that the same tools and concepts can be effectively used to infer a hydrodynamic description of active fluids composed of particles 6 order of magnitude larger in size: pedestrian crowds.