← Back

Fluid Flow

Topic spotlight
TopicWorld Wide

fluid flow

Discover seminars, jobs, and research tagged with fluid flow across World Wide.
5 curated items3 Seminars2 ePosters
Updated about 4 years ago
5 items · fluid flow
5 results
SeminarPhysics of LifeRecording

Metachronal waves in swarms of nematode Turbatrix aceti

Anton Peshkov
University of Rochester
Nov 7, 2021

There is a recent surge of interest in the behavior of active particles that can at the same time align their direction of movement and synchronize their oscillations, known as swarmalators. While analytical and numerical models of such systems are now abundant, no real-life examples have been shown to date. I will present an experimental investigation of the collective motion of the nematode Turbatrix aceti, which self-propel by body undulation. I will show that under favorable conditions these nematodes can synchronize their body oscillations, forming striking traveling metachronal waves which, similar to the case of beating cilia, produce strong fluid flows. I will demonstrate that the location and strength of this collective state can be controlled through the shape of the confining structure; in our case the contact angle of a droplet. This opens a way for producing controlled work such as on-demand flows or displacement of objects. I will illustrate this by a practical example: showing that the force generated by the collectively moving nematodes is sufficient to change the mode of evaporation of fluid droplets, by counteracting the surface-tension force, which allow us to estimate its strength.

SeminarPhysics of LifeRecording

Growing in flows: from evolutionary dynamics to microbial jets

Severine Atis
University of Chicago
Sep 26, 2021

Biological systems can self-organize in complex structures, able to evolve and adapt to widely varying environmental conditions. Despite the importance of fluid flow for transporting and organizing populations, few laboratory systems exist to systematically investigate the impact of advection on their spatial evolutionary dynamics. In this talk, I will discuss how we can address this problem by studying the morphology and genetic spatial structure of microbial colonies growing on the surface of a viscous substrate. When grown on a liquid, I will show that S. cerevisiae (baker’s yeast) can behave like “active matter” and collectively generate a fluid flow many times larger than the unperturbed colony expansion speed, which in turn produces mechanical stresses and fragmentation of the initial colony. Combining laboratory experiments with numerical modeling, I will demonstrate that the coupling between metabolic activity and hydrodynamic flows can produce positive feedbacks and drive preferential growth phenomena leading to the formation of microbial jets. Our work provides rich opportunities to explore the interplay between hydrodynamics, growth and competition within a versatile system.

ePoster

Cilia-mediated cerebrospinal fluid flow modulates neuronal and astroglial activity in the zebrafish larval brain

Percival Paul D'Gama, Inyoung Jeong, Andreas Moe Nygård, Ahmed Jamali, Emre Yaksi, Nathalie Jurisch-Yaksi

FENS Forum 2024

ePoster

The impact of cerebrospinal fluid flow on the brain metabolomic landscape and animal behavior

Mert Ege, Andreas Moe Nygaard, May-Britt Tessem, Nathalie Jurisch-Yaksi

FENS Forum 2024