Fly
fly
Neurobiological constraints on learning: bug or feature?
Understanding how brains learn requires bridging evidence across scales—from behaviour and neural circuits to cells, synapses, and molecules. In our work, we use computational modelling and data analysis to explore how the physical properties of neurons and neural circuits constrain learning. These include limits imposed by brain wiring, energy availability, molecular noise, and the 3D structure of dendritic spines. In this talk I will describe one such project testing if wiring motifs from fly brain connectomes can improve performance of reservoir computers, a type of recurrent neural network. The hope is that these insights into brain learning will lead to improved learning algorithms for artificial systems.
Neural mechanisms of rhythmic motor control in Drosophila
All animal locomotion is rhythmic,whether it is achieved through undulatory movement of the whole body or the coordination of articulated limbs. Neurobiologists have long studied locomotor circuits that produce rhythmic activity with non-rhythmic input, also called central pattern generators (CPGs). However, the cellular and microcircuit implementation of a walking CPG has not been described for any limbed animal. New comprehensive connectomes of the fruit fly ventral nerve cord (VNC) provide an opportunity to study rhythmogenic walking circuits at a synaptic scale.We use a data-driven network modeling approach to identify and characterize a putative walking CPG in the Drosophila leg motor system.
Sensory cognition
This webinar features presentations from SueYeon Chung (New York University) and Srinivas Turaga (HHMI Janelia Research Campus) on theoretical and computational approaches to sensory cognition. Chung introduced a “neural manifold” framework to capture how high-dimensional neural activity is structured into meaningful manifolds reflecting object representations. She demonstrated that manifold geometry—shaped by radius, dimensionality, and correlations—directly governs a population’s capacity for classifying or separating stimuli under nuisance variations. Applying these ideas as a data analysis tool, she showed how measuring object-manifold geometry can explain transformations along the ventral visual stream and suggested that manifold principles also yield better self-supervised neural network models resembling mammalian visual cortex. Turaga described simulating the entire fruit fly visual pathway using its connectome, modeling 64 key cell types in the optic lobe. His team’s systematic approach—combining sparse connectivity from electron microscopy with simple dynamical parameters—recapitulated known motion-selective responses and produced novel testable predictions. Together, these studies underscore the power of combining connectomic detail, task objectives, and geometric theories to unravel neural computations bridging from stimuli to cognitive functions.
Learning and Memory
This webinar on learning and memory features three experts—Nicolas Brunel, Ashok Litwin-Kumar, and Julijana Gjorgieva—who present theoretical and computational approaches to understanding how neural circuits acquire and store information across different scales. Brunel discusses calcium-based plasticity and how standard “Hebbian-like” plasticity rules inferred from in vitro or in vivo datasets constrain synaptic dynamics, aligning with classical observations (e.g., STDP) and explaining how synaptic connectivity shapes memory. Litwin-Kumar explores insights from the fruit fly connectome, emphasizing how the mushroom body—a key site for associative learning—implements a high-dimensional, random representation of sensory features. Convergent dopaminergic inputs gate plasticity, reflecting a high-dimensional “critic” that refines behavior. Feedback loops within the mushroom body further reveal sophisticated interactions between learning signals and action selection. Gjorgieva examines how activity-dependent plasticity rules shape circuitry from the subcellular (e.g., synaptic clustering on dendrites) to the cortical network level. She demonstrates how spontaneous activity during development, Hebbian competition, and inhibitory-excitatory balance collectively establish connectivity motifs responsible for key computations such as response normalization.
Brain circuits for spatial navigation
In this webinar on spatial navigation circuits, three researchers—Ann Hermundstad, Ila Fiete, and Barbara Webb—discussed how diverse species solve navigation problems using specialized yet evolutionarily conserved brain structures. Hermundstad illustrated the fruit fly’s central complex, focusing on how hardwired circuit motifs (e.g., sinusoidal steering curves) enable rapid, flexible learning of goal-directed navigation. This framework combines internal heading representations with modifiable goal signals, leveraging activity-dependent plasticity to adapt to new environments. Fiete explored the mammalian head-direction system, demonstrating how population recordings reveal a one-dimensional ring attractor underlying continuous integration of angular velocity. She showed that key theoretical predictions—low-dimensional manifold structure, isometry, uniform stability—are experimentally validated, underscoring parallels to insect circuits. Finally, Webb described honeybee navigation, featuring path integration, vector memories, route optimization, and the famous waggle dance. She proposed that allocentric velocity signals and vector manipulation within the central complex can encode and transmit distances and directions, enabling both sophisticated foraging and inter-bee communication via dance-based cues.
Brain-Wide Compositionality and Learning Dynamics in Biological Agents
Biological agents continually reconcile the internal states of their brain circuits with incoming sensory and environmental evidence to evaluate when and how to act. The brains of biological agents, including animals and humans, exploit many evolutionary innovations, chiefly modularity—observable at the level of anatomically-defined brain regions, cortical layers, and cell types among others—that can be repurposed in a compositional manner to endow the animal with a highly flexible behavioral repertoire. Accordingly, their behaviors show their own modularity, yet such behavioral modules seldom correspond directly to traditional notions of modularity in brains. It remains unclear how to link neural and behavioral modularity in a compositional manner. We propose a comprehensive framework—compositional modes—to identify overarching compositionality spanning specialized submodules, such as brain regions. Our framework directly links the behavioral repertoire with distributed patterns of population activity, brain-wide, at multiple concurrent spatial and temporal scales. Using whole-brain recordings of zebrafish brains, we introduce an unsupervised pipeline based on neural network models, constrained by biological data, to reveal highly conserved compositional modes across individuals despite the naturalistic (spontaneous or task-independent) nature of their behaviors. These modes provided a scaffolding for other modes that account for the idiosyncratic behavior of each fish. We then demonstrate experimentally that compositional modes can be manipulated in a consistent manner by behavioral and pharmacological perturbations. Our results demonstrate that even natural behavior in different individuals can be decomposed and understood using a relatively small number of neurobehavioral modules—the compositional modes—and elucidate a compositional neural basis of behavior. This approach aligns with recent progress in understanding how reasoning capabilities and internal representational structures develop over the course of learning or training, offering insights into the modularity and flexibility in artificial and biological agents.
Error Consistency between Humans and Machines as a function of presentation duration
Within the last decade, Deep Artificial Neural Networks (DNNs) have emerged as powerful computer vision systems that match or exceed human performance on many benchmark tasks such as image classification. But whether current DNNs are suitable computational models of the human visual system remains an open question: While DNNs have proven to be capable of predicting neural activations in primate visual cortex, psychophysical experiments have shown behavioral differences between DNNs and human subjects, as quantified by error consistency. Error consistency is typically measured by briefly presenting natural or corrupted images to human subjects and asking them to perform an n-way classification task under time pressure. But for how long should stimuli ideally be presented to guarantee a fair comparison with DNNs? Here we investigate the influence of presentation time on error consistency, to test the hypothesis that higher-level processing drives behavioral differences. We systematically vary presentation times of backward-masked stimuli from 8.3ms to 266ms and measure human performance and reaction times on natural, lowpass-filtered and noisy images. Our experiment constitutes a fine-grained analysis of human image classification under both image corruptions and time pressure, showing that even drastically time-constrained humans who are exposed to the stimuli for only two frames, i.e. 16.6ms, can still solve our 8-way classification task with success rates way above chance. We also find that human-to-human error consistency is already stable at 16.6ms.
Modelling the fruit fly brain and body
Through recent advances in microscopy, we now have an unprecedented view of the brain and body of the fruit fly Drosophila melanogaster. We now know the connectivity at single neuron resolution across the whole brain. How do we translate these new measurements into a deeper understanding of how the brain processes sensory information and produces behavior? I will describe two computational efforts to model the brain and the body of the fruit fly. First, I will describe a new modeling method which makes highly accurate predictions of neural activity in the fly visual system as measured in the living brain, using only measurements of its connectivity from a dead brain [1], joint work with Jakob Macke. Second, I will describe a whole body physics simulation of the fruit fly which can accurately reproduce its locomotion behaviors, both flight and walking [2], joint work with Google DeepMind.
Modeling the fruit fly brain and body
Neural codes for natural behaviors in the hippocampus of flying bat
Modeling the Navigational Circuitry of the Fly
Navigation requires orienting oneself relative to landmarks in the environment, evaluating relevant sensory data, remembering goals, and convert all this information into motor commands that direct locomotion. I will present models, highly constrained by connectomic, physiological and behavioral data, for how these functions are accomplished in the fly brain.
How fly neurons compute the direction of visual motion
Detecting the direction of image motion is important for visual navigation, predator avoidance and prey capture, and thus essential for the survival of all animals that have eyes. However, the direction of motion is not explicitly represented at the level of the photoreceptors: it rather needs to be computed by subsequent neural circuits, involving a comparison of the signals from neighboring photoreceptors over time. The exact nature of this process represents a classic example of neural computation and has been a longstanding question in the field. Much progress has been made in recent years in the fruit fly Drosophila melanogaster by genetically targeting individual neuron types to block, activate or record from them. Our results obtained this way demonstrate that the local direction of motion is computed in two parallel ON and OFF pathways. Within each pathway, a retinotopic array of four direction-selective T4 (ON) and T5 (OFF) cells represents the four Cartesian components of local motion vectors (leftward, rightward, upward, downward). Since none of the presynaptic neurons is directionally selective, direction selectivity first emerges within T4 and T5 cells. Our present research focuses on the cellular and biophysical mechanisms by which the direction of image motion is computed in these neurons.
Attending to the ups and downs of Lewy body dementia: An exploration of cognitive fluctuations
Dementia with Lewy bodies (DLB) and Parkinson's disease dementia (PDD) share similarities in pathology and clinical presentation and come under the umbrella term of Lewy body dementias (LBD). Fluctuating cognition is a key symptom in LBD and manifests as altered levels of alertness and attention, with a marked difference between best and worst performance. Cognition and alertness can change over seconds or minutes to hours and days of obtundation. Cognitive fluctuations can have significant impacts on the quality of life of people with LBD as well as potentially contribute to the exacerbation of other transient symptoms including, for example, hallucinations and psychosis as well as making it difficult to measure cognitive effect size benefits in clinical trials of LBD. However, this significant symptom in LBD is poorly understood. In my presentation I will discuss the phenomenology of cognitive fluctuations, how we can measure it clinically and limitations of these approaches. I will then outline the work of our group and others which has been focussed on unpicking the aetiological basis of cognitive fluctuations in LBD using a variety of imaging approaches (e.g. SPECT, sMRI, fMRI and EEG). I will then briefly explore future research directions.
The Geometry of Decision-Making
Running, swimming, or flying through the world, animals are constantly making decisions while on the move—decisions that allow them to choose where to eat, where to hide, and with whom to associate. Despite this most studies have considered only on the outcome of, and time taken to make, decisions. Motion is, however, crucial in terms of how space is represented by organisms during spatial decision-making. Employing a range of new technologies, including automated tracking, computational reconstruction of sensory information, and immersive ‘holographic’ virtual reality (VR) for animals, experiments with fruit flies, locusts and zebrafish (representing aerial, terrestrial and aquatic locomotion, respectively), I will demonstrate that this time-varying representation results in the emergence of new and fundamental geometric principles that considerably impact decision-making. Specifically, we find that the brain spontaneously reduces multi-choice decisions into a series of abrupt (‘critical’) binary decisions in space-time, a process that repeats until only one option—the one ultimately selected by the individual—remains. Due to the critical nature of these transitions (and the corresponding increase in ‘susceptibility’) even noisy brains are extremely sensitive to very small differences between remaining options (e.g., a very small difference in neuronal activity being in “favor” of one option) near these locations in space-time. This mechanism facilitates highly effective decision-making, and is shown to be robust both to the number of options available, and to context, such as whether options are static (e.g. refuges) or mobile (e.g. other animals). In addition, we find evidence that the same geometric principles of decision-making occur across scales of biological organisation, from neural dynamics to animal collectives, suggesting they are fundamental features of spatiotemporal computation.
Investigating semantics above and beyond language: a clinical and cognitive neuroscience approach
The ability to build, store, and manipulate semantic representations lies at the core of all our (inter)actions. Combining evidence from cognitive neuroimaging and experimental neuropsychology, I study the neurocognitive correlates of semantic knowledge in relation to other cognitive functions, chiefly language. In this talk, I will start by reviewing neuroimaging findings supporting the idea that semantic representations are encoded in distributed yet specialized cortical areas (1), and rapidly recovered (2) according to the requirement of the task at hand (3). I will then focus on studies conducted in neurodegenerative patients, offering a unique window on the key role played by a structurally and functionally heterogeneous piece of cortex: the anterior temporal lobe (4,5). I will present pathological, neuroimaging, cognitive, and behavioral data illustrating how damages to language-related networks can affect or spare semantic knowledge as well as possible paths to functional compensation (6,7). Time permitting, we will discuss the neurocognitive dissociation between nouns and verbs (8) and how verb production is differentially impacted by specific language impairments (9).
Gut food cravings? How gut signals control appetite and metabolism
Gut-derived signals regulate metabolism, appetite, and behaviors important for mental health. We have performed a large-scale multidimensional screen to identify gut hormones and nutrient-sensing mechanisms in the intestine that regulate metabolism and behavior in the fruit fly Drosophila. We identified several gut hormones that affect fecundity, stress responses, metabolism, feeding, and sleep behaviors, many of which seem to act sex-specifically. We show that in response to nutrient intake, the enteroendocrine cells (EECs) of the adult Drosophila midgut release hormones that act via inter-organ relays to coordinate metabolism and feeding decisions. These findings suggest that crosstalk between the gut and other tissues regulates food choice according to metabolic needs, providing insight into how that intestine processes nutritional inputs and into the gut-derived signals that relay information regulating nutrient-specific hungers to maintain metabolic homeostasis.
Shallow networks run deep: How peripheral preprocessing facilitates odor classification
Drosophila olfactory sensory hairs ("sensilla") typically house two olfactory receptor neurons (ORNs) which can laterally inhibit each other via electrical ("ephaptic") coupling. ORN pairing is highly stereotyped and genetically determined. Thus, olfactory signals arriving in the Antennal Lobe (AL) have been pre-processed by a fixed and shallow network at the periphery. To uncover the functional significance of this organization, we developed a nonlinear phenomenological model of asymmetrically coupled ORNs responding to odor mixture stimuli. We derived an analytical solution to the ORNs’ dynamics, which shows that the peripheral network can extract the valence of specific odor mixtures via transient amplification. Our model predicts that for efficient read-out of the amplified valence signal there must exist specific patterns of downstream connectivity that reflect the organization at the periphery. Analysis of AL→Lateral Horn (LH) fly connectomic data reveals evidence directly supporting this prediction. We further studied the effect of ephaptic coupling on olfactory processing in the AL→Mushroom Body (MB) pathway. We show that stereotyped ephaptic interactions between ORNs lead to a clustered odor representation of glomerular responses. Such clustering in the AL is an essential assumption of theoretical studies on odor recognition in the MB. Together our work shows that preprocessing of olfactory stimuli by a fixed and shallow network increases sensitivity to specific odor mixtures, and aids in the learning of novel olfactory stimuli. Work led by Palka Puri, in collaboration with Chih-Ying Su and Shiuan-Tze Wu.
How fly neurons compute the direction of visual motion
Detecting the direction of image motion is important for visual navigation, predator avoidance and prey capture, and thus essential for the survival of all animals that have eyes. However, the direction of motion is not explicitly represented at the level of the photoreceptors: it rather needs to be computed by subsequent neural circuits. The exact nature of this process represents a classic example of neural computation and has been a longstanding question in the field. Our results obtained in the fruit fly Drosophila demonstrate that the local direction of motion is computed in two parallel ON and OFF pathways. Within each pathway, a retinotopic array of four direction-selective T4 (ON) and T5 (OFF) cells represents the four Cartesian components of local motion vectors (leftward, rightward, upward, downward). Since none of the presynaptic neurons is directionally selective, direction selectivity first emerges within T4 and T5 cells. Our present research focuses on the cellular and biophysical mechanisms by which the direction of image motion is computed in these neurons.
Hunger state-dependent modulation of decision-making in larval Drosophila
It is critical for all animals to make appropriate, but also flexible, foraging decisions, especially when facing starvation. Sensing olfactory information is essential to evaluate food quality before ingestion. Previously, we found that <i>Drosophila</i> larvae switch their response to certain odors from aversion to attraction when food deprived. The neural mechanism underlying this switch in behavior involves serotonergic modulation and reconfiguration of odor processing in the early olfactory sensory system. We now investigate if a change in hunger state also influences other behavioral decisions. Since it had been shown that fly larvae can perform cannibalism, we investigate the effect of food deprivation on feeding on dead conspecifics. We find that fed fly larvae rarely use dead conspecifics as a food source. However, food deprivation largely enhances this behavior. We will now also investigate the underlying neural mechanisms that mediate this enhancement and compare it to the already described mechanism for a switch in olfactory choice behavior. Generally, this flexibility in foraging behavior enables the larva to explore a broader range of stimuli and to expand their feeding choices to overcome starvation.
Chandelier cells shine a light on the emergence of GABAergic circuits in the cortex
GABAergic interneurons are chiefly responsible for controlling the activity of local circuits in the cortex. Chandelier cells (ChCs) are a type of GABAergic interneuron that control the output of hundreds of neighbouring pyramidal cells through axo-axonic synapses which target the axon initial segment (AIS). Despite their importance in modulating circuit activity, our knowledge of the development and function of axo-axonic synapses remains elusive. We have investigated the emergence and plasticity of axo-axonic synapses in layer 2/3 of the somatosensory cortex (S1) and found that ChCs follow what appear to be homeostatic rules when forming synapses with pyramidal neurons. We are currently implementing in vivo techniques to image the process of axo-axonic synapse formation during development and uncover the dynamics of synaptogenesis and pruning at the AIS. In addition, we are using an all-optical approach to both activate and measure the activity of chandelier cells and their postsynaptic partners in the primary visual cortex (V1) and somatosensory cortex (S1) in mice, also during development. We aim to provide a structural and functional description of the emergence and plasticity of a GABAergic synapse type in the cortex.
An open-source miniature two-photon microscope for large-scale calcium imaging in freely moving mice
Due to the unsuitability of benchtop imaging for tasks that require unrestrained movement, investigators have tried, for almost two decades, to develop miniature 2P microscopes-2P miniscopes–that can be carried on the head of freely moving animals. In this talk, I would first briefly review the development history of this technique, and then report our latest progress on developing the new generation of 2P miniscopes, MINI2P, that overcomes the limits of previous versions by both meeting requirements for fatigue-free exploratory behavior during extended recording periods and satisfying demands for further increasing the cell yield by an order of magnitude, to thousands of neurons. The performance and reliability of MINI2P are validated by recordings of spatially tuned neurons in three brain regions and in three behavioral assays. All information about MINI2P is open access, with instruction videos, code, and manuals on public repositories, and workshops will be organized to help new users getting started. MINI2P permits large-scale and high-resolution calcium imaging in freely-moving mice, and opens the door to investigating brain functions during unconstrained natural behaviors.
The Secret Bayesian Life of Ring Attractor Networks
Efficient navigation requires animals to track their position, velocity and heading direction (HD). Some animals’ behavior suggests that they also track uncertainties about these navigational variables, and make strategic use of these uncertainties, in line with a Bayesian computation. Ring-attractor networks have been proposed to estimate and track these navigational variables, for instance in the HD system of the fruit fly Drosophila. However, such networks are not designed to incorporate a notion of uncertainty, and therefore seem unsuited to implement dynamic Bayesian inference. Here, we close this gap by showing that specifically tuned ring-attractor networks can track both a HD estimate and its associated uncertainty, thereby approximating a circular Kalman filter. We identified the network motifs required to integrate angular velocity observations, e.g., through self-initiated turns, and absolute HD observations, e.g., visual landmark inputs, according to their respective reliabilities, and show that these network motifs are present in the connectome of the Drosophila HD system. Specifically, our network encodes uncertainty in the amplitude of a localized bump of neural activity, thereby generalizing standard ring attractor models. In contrast to such standard attractors, however, proper Bayesian inference requires the network dynamics to operate in a regime away from the attractor state. More generally, we show that near-Bayesian integration is inherent in generic ring attractor networks, and that their amplitude dynamics can account for close-to-optimal reliability weighting of external evidence for a wide range of network parameters. This only holds, however, if their connection strengths allow the network to sufficiently deviate from the attractor state. Overall, our work offers a novel interpretation of ring attractor networks as implementing dynamic Bayesian integrators. We further provide a principled theoretical foundation for the suggestion that the Drosophila HD system may implement Bayesian HD tracking via ring attractor dynamics.
Learning static and dynamic mappings with local self-supervised plasticity
Animals exhibit remarkable learning capabilities with little direct supervision. Likewise, self-supervised learning is an emergent paradigm in artificial intelligence, closing the performance gap to supervised learning. In the context of biology, self-supervised learning corresponds to a setting where one sense or specific stimulus may serve as a supervisory signal for another. After learning, the latter can be used to predict the former. On the implementation level, it has been demonstrated that such predictive learning can occur at the single neuron level, in compartmentalized neurons that separate and associate information from different streams. We demonstrate the power such self-supervised learning over unsupervised (Hebb-like) learning rules, which depend heavily on stimulus statistics, in two examples: First, in the context of animal navigation where predictive learning can associate internal self-motion information always available to the animal with external visual landmark information, leading to accurate path-integration in the dark. We focus on the well-characterized fly head direction system and show that our setting learns a connectivity strikingly similar to the one reported in experiments. The mature network is a quasi-continuous attractor and reproduces key experiments in which optogenetic stimulation controls the internal representation of heading, and where the network remaps to integrate with different gains. Second, we show that incorporating global gating by reward prediction errors allows the same setting to learn conditioning at the neuronal level with mixed selectivity. At its core, conditioning entails associating a neural activity pattern induced by an unconditioned stimulus (US) with the pattern arising in response to a conditioned stimulus (CS). Solving the generic problem of pattern-to-pattern associations naturally leads to emergent cognitive phenomena like blocking, overshadowing, saliency effects, extinction, interstimulus interval effects etc. Surprisingly, we find that the same network offers a reductionist mechanism for causal inference by resolving the post hoc, ergo propter hoc fallacy.
Integrating theory-guided and data-driven approaches for measuring consciousness
Clinical assessment of consciousness is a significant issue, with recent research suggesting some brain-damaged patients who are assessed as unconscious are in fact conscious. Misdiagnosis of consciousness can also be detrimental when it comes to general anaesthesia, causing numerous psychological problems, including post-traumatic stress disorder. Avoiding awareness with overdose of anaesthetics, however, can also lead to cognitive impairment. Currently available objective assessment of consciousness is limited in accuracy or requires expensive equipment with major barriers to translation. In this talk, we will outline our recent theory-guided and data-driven approaches to develop new, optimized consciousness measures that will be robustly evaluated on an unprecedented breadth of high-quality neural data, recorded from the fly model system. We will overcome the subjective-choice problem in data-driven and theory-guided approaches with a comprehensive data analytic framework, which has never been applied to consciousness detection, integrating previously disconnected streams of research in consciousness detection to accelerate the translation of objective consciousness measures into clinical settings.
Seeing the world through moving photoreceptors - binocular photomechanical microsaccades give fruit fly hyperacute 3D-vision
To move efficiently, animals must continuously work out their x,y,z positions with respect to real-world objects, and many animals have a pair of eyes to achieve this. How photoreceptors actively sample the eyes’ optical image disparity is not understood because this fundamental information-limiting step has not been investigated in vivo over the eyes’ whole sampling matrix. This integrative multiscale study will advance our current understanding of stereopsis from static image disparity comparison to a morphodynamic active sampling theory. It shows how photomechanical photoreceptor microsaccades enable Drosophila superresolution three-dimensional vision and proposes neural computations for accurately predicting these flies’ depth-perception dynamics, limits, and visual behaviors.
Butterfly effects in perceptual development
What the fly’s eye tells the fly’s brain…and beyond
Fly Escape Behaviors: Flexible and Modular We have identified a set of escape maneuvers performed by a fly when confronted by a looming object. These escape responses can be divided into distinct behavioral modules. Some of the modules are very stereotyped, as when the fly rapidly extends its middle legs to jump off the ground. Other modules are more complex and require the fly to combine information about both the location of the threat and its own body posture. In response to an approaching object, a fly chooses some varying subset of these behaviors to perform. We would like to understand the neural process by which a fly chooses when to perform a given escape behavior. Beyond an appealing set of behaviors, this system has two other distinct advantages for probing neural circuitry. First, the fly will perform escape behaviors even when tethered such that its head is fixed and neural activity can be imaged or monitored using electrophysiology. Second, using Drosophila as an experimental animal makes available a rich suite of genetic tools to activate, silence, or image small numbers of cells potentially involved in the behaviors. Neural Circuits for Escape Until recently, visually induced escape responses have been considered a hardwired reflex in Drosophila. White-eyed flies with deficient visual pigment will perform a stereotyped middle-leg jump in response to a light-off stimulus, and this reflexive response is known to be coordinated by the well-studied giant fiber (GF) pathway. The GFs are a pair of electrically connected, large-diameter interneurons that traverse the cervical connective. A single GF spike results in a stereotyped pattern of muscle potentials on both sides of the body that extends the fly's middle pair of legs and starts the flight motor. Recently, we have found that a fly escaping a looming object displays many more behaviors than just leg extension. Most of these behaviors could not possibly be coordinated by the known anatomy of the GF pathway. Response to a looming threat thus appears to involve activation of numerous different neural pathways, which the fly may decide if and when to employ. Our goal is to identify the descending pathways involved in coordinating these escape behaviors as well as the central brain circuits, if any, that govern their activation. Automated Single-Fly Screening We have developed a new kind of high-throughput genetic screen to automatically capture fly escape sequences and quantify individual behaviors. We use this system to perform a high-throughput genetic silencing screen to identify cell types of interest. Automation permits analysis at the level of individual fly movements, while retaining the capacity to screen through thousands of GAL4 promoter lines. Single-fly behavioral analysis is essential to detect more subtle changes in behavior during the silencing screen, and thus to identify more specific components of the contributing circuits than previously possible when screening populations of flies. Our goal is to identify candidate neurons involved in coordination and choice of escape behaviors. Measuring Neural Activity During Behavior We use whole-cell patch-clamp electrophysiology to determine the functional roles of any identified candidate neurons. Flies perform escape behaviors even when their head and thorax are immobilized for physiological recording. This allows us to link a neuron's responses directly to an action.
Synthetic and natural images unlock the power of recurrency in primary visual cortex
During perception the visual system integrates current sensory evidence with previously acquired knowledge of the visual world. Presumably this computation relies on internal recurrent interactions. We record populations of neurons from the primary visual cortex of cats and macaque monkeys and find evidence for adaptive internal responses to structured stimulation that change on both slow and fast timescales. In the first experiment, we present abstract images, only briefly, a protocol known to produce strong and persistent recurrent responses in the primary visual cortex. We show that repetitive presentations of a large randomized set of images leads to enhanced stimulus encoding on a timescale of minutes to hours. The enhanced encoding preserves the representational details required for image reconstruction and can be detected in post-exposure spontaneous activity. In a second experiment, we show that the encoding of natural scenes across populations of V1 neurons is improved, over a timescale of hundreds of milliseconds, with the allocation of spatial attention. Given the hierarchical organization of the visual cortex, contextual information from the higher levels of the processing hierarchy, reflecting high-level image regularities, can inform the activity in V1 through feedback. We hypothesize that these fast attentional boosts in stimulus encoding rely on recurrent computations that capitalize on the presence of high-level visual features in natural scenes. We design control images dominated by low-level features and show that, in agreement with our hypothesis, the attentional benefits in stimulus encoding vanish. We conclude that, in the visual system, powerful recurrent processes optimize neuronal responses, already at the earliest stages of cortical processing.
Neural circuits of visuospatial working memory
One elementary brain function that underlies many of our cognitive behaviors is the ability to maintain parametric information briefly in mind, in the time scale of seconds, to span delays between sensory information and actions. This component of working memory is fragile and quickly degrades with delay length. Under the assumption that behavioral delay-dependencies mark core functions of the working memory system, our goal is to find a neural circuit model that represents their neural mechanisms and apply it to research on working memory deficits in neuropsychiatric disorders. We have constrained computational models of spatial working memory with delay-dependent behavioral effects and with neural recordings in the prefrontal cortex during visuospatial working memory. I will show that a simple bump attractor model with weak inhomogeneities and short-term plasticity mechanisms can link neural data with fine-grained behavioral output in a trial-by-trial basis and account for the main delay-dependent limitations of working memory: precision, cardinal repulsion biases and serial dependence. I will finally present data from participants with neuropsychiatric disorders that suggest that serial dependence in working memory is specifically altered, and I will use the model to infer the possible neural mechanisms affected.
GeNN
Large-scale numerical simulations of brain circuit models are important for identifying hypotheses on brain functions and testing their consistency and plausibility. Similarly, spiking neural networks are also gaining traction in machine learning with the promise that neuromorphic hardware will eventually make them much more energy efficient than classical ANNs. In this session, we will present the GeNN (GPU-enhanced Neuronal Networks) framework, which aims to facilitate the use of graphics accelerators for computational models of large-scale spiking neuronal networks to address the challenge of efficient simulations. GeNN is an open source library that generates code to accelerate the execution of network simulations on NVIDIA GPUs through a flexible and extensible interface, which does not require in-depth technical knowledge from the users. GeNN was originally developed as a pure C++ and CUDA library but, subsequently, we have added a Python interface and OpenCL backend. We will briefly cover the history and basic philosophy of GeNN and show some simple examples of how it is used and how it interacts with other Open Source frameworks such as Brian2GeNN and PyNN.
Reasoning Ability: Neural Mechanisms, Development, and Plasticity
Relational thinking, or the process of identifying and integrating relations between mental representations, is regularly invoked during reasoning. This mental capacity enables us to draw higher-order abstractions and generalize across situations and contexts, and we have argued that it should be included in the pantheon of executive functions. In this talk, I will briefly review our lab's work characterizing the roles of lateral prefrontal and parietal regions in relational thinking. I will then discuss structural and functional predictors of individual differences and developmental changes in reasoning.
Effects of pathological Tau on hippocampal neuronal activity and spatial memory in ageing mice
The gradual accumulation of hyperphosphorylated forms of the Tau protein (pTau) in the human brain correlate with cognitive dysfunction and neurodegeneration. I will present our recent findings on the consequences of human pTau aggregation in the hippocampal formation of a mouse tauopathy model. We show that pTau preferentially accumulates in deep-layer pyramidal neurons, leading to their neurodegeneration. In aged but not younger mice, pTau spreads to oligodendrocytes. During ‘goal-directed’ navigation, we detect fewer high-firing pyramidal cells, but coupling to network oscillations is maintained in the remaining cells. The firing patterns of individually recorded and labelled pyramidal and GABAergic neurons are similar in transgenic and non-transgenic mice, as are network oscillations, suggesting intact neuronal coordination. This is consistent with a lack of pTau in subcortical brain areas that provide rhythmic input to the cortex. Spatial memory tests reveal a reduction in short-term familiarity of spatial cues but unimpaired spatial working and reference memory. These results suggest that preserved subcortical network mechanisms compensate for the widespread pTau aggregation in the hippocampal formation. I will also briefly discuss ideas on the subcortical origins of spatial memory and the concept of the cortex as a monitoring device.
Do we reason differently about affectively charged analogies? Insights from EEG research
Affectively charged analogies are commonly used in literature and art, but also in politics and argumentation. There are reasons to think we may process these analogies differently. Notably, analogical reasoning is a complex process that requires the use of cognitive resources, which are limited. In the presence of affectively charged content, some of these resources might be directed towards affective processing and away from analogical reasoning. To investigate this idea, I investigated effects of affective charge on differences in brain activity evoked by sound versus unsound analogies. The presentation will detail the methods and results for two such experiments, one in which participants saw analogies formed of neutral and negative words and one in which they were created by combining conditioned symbols. I will also briefly discuss future research aiming to investigate the effects of analogical reasoning on brain activity related to affective processing.
Neural circuits for novel choices and for choice speed and accuracy changes in macaques
While most experimental tasks aim at isolating simple cognitive processes to study their neural bases, naturalistic behaviour is often complex and multidimensional. I will present two studies revealing previously uncharacterised neural circuits for decision-making in macaques. This was possible thanks to innovative experimental tasks eliciting sophisticated behaviour, bridging the human and non-human primate research traditions. Firstly, I will describe a specialised medial frontal circuit for novel choice in macaques. Traditionally, monkeys receive extensive training before neural data can be acquired, while a hallmark of human cognition is the ability to act in novel situations. I will show how this medial frontal circuit can combine the values of multiple attributes for each available novel item on-the-fly to enable efficient novel choices. This integration process is associated with a hexagonal symmetry pattern in the BOLD response, consistent with a grid-like representation of the space of all available options. We prove the causal role played by this circuit by showing that focussed transcranial ultrasound neuromodulation impairs optimal choice based on attribute integration and forces the subjects to default to a simpler heuristic decision strategy. Secondly, I will present an ongoing project addressing the neural mechanisms driving behaviour shifts during an evidence accumulation task that requires subjects to trade speed for accuracy. While perceptual decision-making in general has been thoroughly studied, both cognitively and neurally, the reasons why speed and/or accuracy are adjusted, and the associated neural mechanisms, have received little attention. We describe two orthogonal dimensions in which behaviour can vary (traditional speed-accuracy trade-off and efficiency) and we uncover independent neural circuits concerned with changes in strategy and fluctuations in the engagement level. The former involves the frontopolar cortex, while the latter is associated with the insula and a network of subcortical structures including the habenula.
Online "From Bench to Bedside" Neurosciences Symposium
2 Keynote lectures :“Homeostatic control of sleep in the fly"and “Management of Intracerebral Haemorrhage – where is the evidence?” and 2 sessions: "Cortical top-down information processing” and “Virtual/augmented reality and its implications for the clinic”
Synergy of color and motion vision for detecting approaching objects in Drosophila
I am working on color vision in Drosophila, identifying behaviors that involve color vision and understanding the neural circuits supporting them (Longden 2016). I have a long-term interest in understanding how neural computations operate reliably under changing circumstances, be they external changes in the sensory context, or internal changes of state such as hunger and locomotion. On internal state-modulation of sensory processing, I have shown how hunger alters visual motion processing in blowflies (Longden et al. 2014), and identified a role for octopamine in modulating motion vision during locomotion (Longden and Krapp 2009, 2010). On responses to external cues, I have shown how one kind of uncertainty in the motion of the visual scene is resolved by the fly (Saleem, Longden et al. 2012), and I have identified novel cells for processing translation-induced optic flow (Longden et al. 2017). I like working with colleagues who use different model systems, to get at principles of neural operation that might apply in many species (Ding et al. 2016, Dyakova et al. 2015). I like work motivated by computational principles - my background is computational neuroscience, with a PhD on models of memory formation in the hippocampus (Longden and Willshaw, 2007).
Epilepsy Genetics – From Family Studies to Polygenic Risk Scores
Whilst epilepsy may be a consequence of an acquired insult including trauma, stroke, and brain tumours, the genetic component to epilepsies has been greatly under-estimated. Considerable progress has recently occurred in the understanding of epilepsy genetics, both at a clinical genetic level and in the basic science of epilepsies. The clinical evidence for genetic components will be first briefly discussed including data from population studies, twin analyses and multiplex family studies. Initial molecular discoveries occurred via classical methods of linkage and gene identification. Recent large-scale hypothesis-free whole exome studies searching for rare variants and genome-wide association studies detecting common variants have been very rewarding. These discoveries have now impacted on clinical practice, especially in severe childhood epilepsies but increasingly so in adult patients. The “genetic background” of patients has long been posited as part of the reason that some patients have epilepsy, or perhaps why some have more severe epilepsy. This has been unmeasurable but now, with the development of polygenic risk scores, the “background” is now in the research foreground. The current and future impact of polygenic risk scores will be explored.
Neural Codes for Natural Behaviors in Flying Bats
This talk will focus on the importance of using natural behaviors in neuroscience research – the “Natural Neuroscience” approach. I will illustrate this point by describing studies of neural codes for spatial behaviors and social behaviors, in flying bats – using wireless neurophysiology methods that we developed – and will highlight new neuronal representations that we discovered in animals navigating through 3D spaces, or in very large-scale environments, or engaged in social interactions. In particular, I will discuss: (1) A multi-scale neural code for very large environments, which we discovered in bats flying in a 200-meter long tunnel. This new type of neural code is fundamentally different from spatial codes reported in small environments – and we show theoretically that it is superior for representing very large spaces. (2) Rapid modulation of position × distance coding in the hippocampus during collision-avoidance behavior between two flying bats. This result provides a dramatic illustration of the extreme dynamism of the neural code. (3) Local-but-not-global order in 3D grid cells – a surprising experimental finding, which can be explained by a simple physics-inspired model, which successfully describes both 3D and 2D grids. These results strongly argue against many of the classical, geometrically-based models of grid cells. (4) I will also briefly describe new results on the social representation of other individuals in the hippocampus, in a highly social multi-animal setting. The lecture will propose that neuroscience experiments – in bats, rodents, monkeys or humans – should be conducted under evermore naturalistic conditions.
Inferring informational structures in neural recordings of drosophila with epsilon-machines
Measuring the degree of consciousness an organism possesses has remained a longstanding challenge in Neuroscience. In part, this is due to the difficulty of finding the appropriate mathematical tools for describing such a subjective phenomenon. Current methods relate the level of consciousness to the complexity of neural activity, i.e., using the information contained in a stream of recorded signals they can tell whether the subject might be awake, asleep, or anaesthetised. Usually, the signals stemming from a complex system are correlated in time; the behaviour of the future depends on the patterns in the neural activity of the past. However these past-future relationships remain either hidden to, or not taken into account in the current measures of consciousness. These past-future correlations are likely to contain more information and thus can reveal a richer understanding about the behaviour of complex systems like a brain. Our work employs the "epsilon-machines” framework to account for the time correlations in neural recordings. In a nutshell, epsilon-machines reveal how much of the past neural activity is needed in order to accurately predict how the activity in the future will behave, and this is summarised in a single number called "statistical complexity". If a lot of past neural activity is required to predict the future behaviour, then can we say that the brain was more “awake" at the time of recording? Furthermore, if we read the recordings in reverse, does the difference between forward and reverse-time statistical complexity allow us to quantify the level of time asymmetry in the brain? Neuroscience predicts that there should be a degree of time asymmetry in the brain. However, this has never been measured. To test this, we used neural recordings measured from the brains of fruit flies and inferred the epsilon-machines. We found that the nature of the past and future correlations of neural activity in the brain, drastically changes depending on whether the fly was awake or anaesthetised. Not only does our study find that wakeful and anaesthetised fly brains are distinguished by how statistically complex they are, but that the amount of correlations in wakeful fly brains was much more sensitive to whether the neural recordings were read forward vs. backwards in time, compared to anaesthetised brains. In other words, wakeful fly brains were more complex, and time asymmetric than anaesthetised ones.
Hippocampal replay reflects specific past experiences rather than a plan for subsequent choice
Executing memory-guided behavior requires storage of information about experience and later recall of that information to inform choices. Awake hippocampal replay, when hippocampal neural ensembles briefly reactivate a representation related to prior experience, has been proposed to critically contribute to these memory-related processes. However, it remains unclear whether awake replay contributes to memory function by promoting the storage of past experiences, facilitating planning based on evaluation of those experiences, or both. We designed a dynamic spatial task that promotes replay before a memory-based choice and assessed how the content of replay related to past and future behavior. We found that replay content was decoupled from subsequent choice and instead was enriched for representations of previously rewarded locations and places that had not been visited recently, indicating a role in memory storage rather than in directly guiding subsequent behavior.
NMC4 Short Talk: Transient neuronal suppression for exploitation of new sensory evidence
Decision-making in noisy environments with constant sensory evidence involves integrating sequentially-sampled evidence, a strategy formalized by diffusion models which is supported by decades behavioral and neural findings. By contrast, it is unknown whether this strategy is also used during decision-making when the underlying sensory evidence is expected to change. Here, we trained monkeys to identify the dominant color of a dynamically refreshed checkerboard pattern that doesn't become informative until after a variable delay. Animals' behavioral responses were briefly suppressed after an abrupt change in evidence, and many neurons in the frontal eye field displayed a corresponding dip in activity at this time, similar to the dip frequently observed after stimulus onset. Generalized drift-diffusion models revealed that behavior and neural activity were consistent with a brief suppression of motor output without a change in evidence accumulation itself, in contrast to the popular belief that evidence accumulation is paused or reset. These results suggest that a brief interruption in motor preparation is an important strategy for dealing with changing evidence during perceptual decision making.
NMC4 Short Talk: The complete connectome of an insect brain
Brains must integrate complex sensory information and compare to past events to generate appropriate behavioral responses. The neural circuit basis of these computations is unclear and the underlying structure unknown. Here, we mapped the comprehensive synaptic wiring diagram of the fruit fly larva brain, which contains 3,013 neurons and 544K synaptic sites. It is the most complete insect connectome to date: 1) Both brain hemispheres are reconstructed, allowing investigation of neural pathways that include contralateral axons, which we found in 37% of brain neurons. 2) All sensory neurons and descending neurons are reconstructed, allowing one to follow signals in an uninterrupted chain—from the sensory periphery, through the brain, to motor neurons in the nerve cord. We developed novel computational tools, allowing us to cluster the brain and investigate how information flows through it. We discovered that feedforward pathways from sensory to descending neurons are multilayered and highly multimodal. Robust feedback was observed at almost all levels of the brain, including descending neurons. We investigated how the brain hemispheres communicate with each other and the nerve cord, leading to identification of novel circuit motifs. This work provides the complete blueprint of a brain and a strong foundation to study the structure-function relationship of neural circuits.
NMC4 Keynote: An all-natural deep recurrent neural network architecture for flexible navigation
A wide variety of animals and some artificial agents can adapt their behavior to changing cues, contexts, and goals. But what neural network architectures support such behavioral flexibility? Agents with loosely structured network architectures and random connections can be trained over millions of trials to display flexibility in specific tasks, but many animals must adapt and learn with much less experience just to survive. Further, it has been challenging to understand how the structure of trained deep neural networks relates to their functional properties, an important objective for neuroscience. In my talk, I will use a combination of behavioral, physiological and connectomic evidence from the fly to make the case that the built-in modularity and structure of its networks incorporate key aspects of the animal’s ecological niche, enabling rapid flexibility by constraining learning to operate on a restricted parameter set. It is not unlikely that this is also a feature of many biological neural networks across other animals, large and small, and with and without vertebrae.
The Unfolding Argument: theoretical and methodological implications
In the first part of this talk, I will briefly present the unfolding argument by Doerig et al. (2019) and the various replies in the philosophical and neuroscientific literature. In the second part of the talk, I will explore the ramifications that this debate has for the science of consciousness and its philosophy, with particular focus on these questions: (i) which type of explanation should a theory of consciousness provide? (ii) what is the evidential basis for theories of consciousness?
Target detection in the natural world
Animal sensory systems are optimally adapted to those features typically encountered in natural surrounds, thus allowing neurons that have a limited bandwidth to encode almost impossibly large input ranges. Importantly, natural scenes are not random, and peripheral visual systems have therefore evolved to reduce the predictable redundancy. The vertebrate visual cortex is also optimally tuned to the spatial statistics of natural scenes, but much less is known about how the insect brain responds to these. We are redressing this deficiency using several techniques. Olga Dyakova uses exquisite image manipulation to give natural images unnatural image statistics, or vice versa. Marissa Holden then uses these images as stimuli in electrophysiological recordings of neurons in the fly optic lobes, to see how the brain codes for the statistics typically encountered in natural scenes, and Olga Dyakova measures the behavioral optomotor response on our trackball set-up.
An optimal population code for global motion estimation in local direction-selective cells
Neuronal computations are matched to optimally encode the sensory information that is available and relevant for the animal. However, the physical distribution of sensory information is often shaped by the animal’s own behavior. One prominent example is the encoding of optic flow fields that are generated during self-motion of the animal and will therefore depend on the type of locomotion. How evolution has matched computational resources to the behavioral constraints of an animal is not known. Here we use in vivo two photon imaging to record from a population of >3.500 local-direction selective cells. Our data show that the local direction-selective T4/T5 neurons in Drosophila form a population code that is matched to represent optic flow fields generated during translational and rotational self-motion of the fly. This coding principle for optic flow is reminiscent to the population code of local direction-selective ganglion cells in the mouse retina, where four direction-selective ganglion cells encode four different axes of self-motion encountered during walking (Sabbah et al., 2017). However, in flies we find six different subtypes of T4 and T5 cells that, at the population level, represent six axes of self-motion of the fly. The four uniformly tuned T4/T5 subtypes described previously represent a local snapshot (Maisak et al. 2013). The encoding of six types of optic flow in the fly as compared to four types of optic flow in mice might be matched to the high degrees of freedom encountered during flight. Thus, a population code for optic flow appears to be a general coding principle of visual systems, resulting from convergent evolution, but matching the individual ethological constraints of the animal.
Playing StarCraft and saving the world using multi-agent reinforcement learning!
This is my C-14 Impaler gauss rifle! There are many like it, but this one is mine!" - A terran marine If you have never heard of a terran marine before, then you have probably missed out on playing the very engaging and entertaining strategy computer game, StarCraft. However, don’t despair, because what we have in store might be even more exciting! In this interactive session, we will take you through, step-by-step, on how to train a team of terran marines to defeat a team of marines controlled by the built-in game AI in StarCraft II. How will we achieve this? Using multi-agent reinforcement learning (MARL). MARL is a useful framework for building distributed intelligent systems. In MARL, multiple agents are trained to act as individual decision-makers of some larger system, while learning to work as a team. We will show you how to use Mava (https://github.com/instadeepai/Mava), a newly released research framework for MARL to build a multi-agent learning system for StarCraft II. We will provide the necessary guidance, tools and background to understand the key concepts behind MARL, how to use Mava building blocks to build systems and how to train a system from scratch. We will conclude the session by briefly sharing various exciting real-world application areas for MARL at InstaDeep, such as large-scale autonomous train navigation and circuit board routing. These are problems that become exponentially more difficult to solve as they scale. Finally, we will argue that many of humanity’s most important practical problems are reminiscent of the ones just described. These include, for example, the need for sustainable management of distributed resources under the pressures of climate change, or efficient inventory control and supply routing in critical distribution networks, or robotic teams for rescue missions and exploration. We believe MARL has enormous potential to be applied in these areas and we hope to inspire you to get excited and interested in MARL and perhaps one day contribute to the field!
What neural oscillations can(not) do for syntactic structure building
The question of how syntactic structure can be built at the neural level has come to the forefront of cognitive neuroscience in the last decade. Neural oscillations have been widely recognised as playing an important role in building syntactic representations. In this talk I will review existing oscillatory approaches to syntactic structure building and assess their functionality in light of basic properties of a hierarchical syntactic structure, such as varied length of syntactic phrases, nesting of constituents, overlap in length between different levels of the syntactic hierarchy and others. I will also briefly discuss key requirements on neural structure building mechanisms from the perspective of a real-time parser.
(Un)consciousness & (In)attention
In this talk, I shall not argue for any single thesis or theory in the realm of the (un)consciousness and (in)attention. Instead I will discuss specific examples where philosophers and psychologists can have genuine collaborations in this area. Since issues concerning phenomenological overflow is already too familiar for this audience, I will briefly discuss it only, and focus on other issues that have not been overworked. The exact contents are to be determined, but I will perhaps focus on recent controversies over “sustained representation of perspectival shape” (Morales, Bax, and Firestone, 2020, 2021).
Making connections: how epithelial tissues guarantee folding
Tissue folding is a ubiquitous shape change event during development whereby a cell sheet bends into a curved 3D structure. This mechanical process is remarkably robust, and the correct final form is almost always achieved despite internal fluctuations and external perturbations inherent in living systems. While many genetic and molecular strategies that lead to robust development have been established, much less is known about how mechanical patterns and movements are ensured at the population level. I will describe how quantitative imaging, physical modeling and concepts from network science can uncover collective interactions that govern tissue patterning and shape change. Actin and myosin are two important cytoskeletal proteins involved in the force generation and movement of cells. Both parts of this talk will be about the spontaneous organization of actomyosin networks and their role in collective tissue dynamics. First, I will present how out-of-plane curvature can trigger the global alignment of actin fibers and a novel transition from collective to individual cell migration in culture. I will then describe how tissue-scale cytoskeletal patterns can guide tissue folding in the early fruit fly embryo. I will show that actin and myosin organize into a network that spans a domain of the embryo that will fold. Redundancy in this supracellular network encodes the tissue’s intrinsic robustness to mechanical and molecular perturbations during folding.
NAD+ metabolism in axon and neurodegeneration (from a fly’s perspective)
The Geometry of Decision-Making
Choosing among spatially distributed options is a central challenge for animals, from deciding among alternative potential food sources or refuges, to choosing with whom to associate. Here, using an integrated theoretical and experimental approach (employing immersive Virtual Reality), with both invertebrate and vertebrate models—the fruit fly, desert locust and zebrafish—we consider the recursive interplay between movement and collective vectorial integration in the brain during decision-making regarding options (potential ‘targets’) in space. We reveal that the brain repeatedly breaks multi-choice decisions into a series of abrupt (critical) binary decisions in space-time where organisms switch, spontaneously, from averaging vectorial information among, to suddenly excluding one of, the remaining options. This bifurcation process repeats until only one option—the one ultimately selected—remains. Close to each bifurcation the ‘susceptibility’ of the system exhibits a sharp increase, inevitably causing small differences among the remaining options to become amplified; a property that both comes ‘for free’ and is highly desirable for decision-making. This mechanism facilitates highly effective decision-making, and is shown to be robust both to the number of options available, and to context, such as whether options are static (e.g. refuges) or mobile (e.g. other animals). In addition, we find evidence that the same geometric principles of decision-making occur across scales of biological organisation, from neural dynamics to animal collectives, suggesting they are fundamental features of spatiotemporal computation.
Learning to aggress – Behavioral and circuit mechanisms of aggression reward
Aggression is an ethologically complex behavior with equally complex underlying mechanisms. Here, I present data on one form of aggression, appetitive or rewarding aggression, and the behavioral, cellular and system-level mechanisms guiding this behavior. First, I will present one way in which appetitive aggression is modeled in mice, and extend aggression motivation to the concept of compulsive aggression seeking and relapse. I will then briefly highlight recent advances in computer vision and machine learning for automated scoring of aggressive behavior, the role of specific cell-types in controlling aggression reward, and close with preliminary data on the whole brain aggression reward functional connectome using light sheet fluorescent microscopy (LSFM).
PiVR: An affordable and versatile closed-loop platform to study unrestrained sensorimotor behavior
PiVR is a system that allows experimenters to immerse small animals into virtual realities. The system tracks the position of the animal and presents light stimulation according to predefined rules, thus creating a virtual landscape in which the animal can behave. By using optogenetics, we have used PiVR to present fruit fly larvae with virtual olfactory realities, adult fruit flies with a virtual gustatory reality and zebrafish larvae with a virtual light gradient. PiVR operates at high temporal resolution (70Hz) with low latencies (<30 milliseconds) while being affordable (<US$500) and easy to build (<6 hours). Through extensive documentation (www.PiVR.org), this tool was designed to be accessible to a wide public, from high school students to professional researchers studying systems neuroscience in academia.
Mechanistic insights from a mouse model of HCN1 developmental epileptic encephalopathy
Pathogenic variants in HCN1 are associated with severe developmental and epileptic encephalopathies (DEE). We have engineered the Hcn1 M294L heterozygous knock-in (Hcn1M294L) mouse which is a homolog of the de novo HCN1 M305L recurrent pathogenic variant. The mouse recapitulates the phenotypic features of patients including having spontaneous seizures and a learning deficit. In this talk I will present experimental work that probes the molecular and cellular mechanisms underlying hyper-excitability in the mouse model. This will include testing the efficacy of currently available antiepileptic drugs and a novel precision medicine approach. I will also briefly touch on how disease biology can give insights into the biophysical properties of HCN channels.
Neural circuits that support robust and flexible navigation in dynamic naturalistic environments
Tracking heading within an environment is a fundamental requirement for flexible, goal-directed navigation. In insects, a head-direction representation that guides the animal’s movements is maintained in a conserved brain region called the central complex. Two-photon calcium imaging of genetically targeted neural populations in the central complex of tethered fruit flies behaving in virtual reality (VR) environments has shown that the head-direction representation is updated based on self-motion cues and external sensory information, such as visual features and wind direction. Thus far, the head direction representation has mainly been studied in VR settings that only give flies control of the angular rotation of simple sensory cues. How the fly’s head direction circuitry enables the animal to navigate in dynamic, immersive and naturalistic environments is largely unexplored. I have developed a novel setup that permits imaging in complex VR environments that also accommodate flies’ translational movements. I have previously demonstrated that flies perform visually-guided navigation in such an immersive VR setting, and also that they learn to associate aversive optogenetically-generated heat stimuli with specific visual landmarks. A stable head direction representation is likely necessary to support such behaviors, but the underlying neural mechanisms are unclear. Based on a connectomic analysis of the central complex, I identified likely circuit mechanisms for prioritizing and combining different sensory cues to generate a stable head direction representation in complex, multimodal environments. I am now testing these predictions using calcium imaging in genetically targeted cell types in flies performing 2D navigation in immersive VR.
Internal structure of honey bee swarms for mechanical stability and division of labor
The western honey bee (Apis mellifera) is a domesticated pollinator famous for living in highly social colonies. In the spring, thousands of worker bees and a queen fly from their hive in search of a new home. They self-assemble into a swarm that hangs from a tree branch for several days. We reconstruct the non-isotropic arrangement of worker bees inside swarms made up of 3000 - 8000 bees using x-ray computed tomography. Some bees are stationary and hang from the attachment board or link their bodies into hanging chains to support the swarm structure. The remaining bees use the chains as pathways to walk around the swarm, potentially to feed the queen or communicate with one another. The top layers of bees bear more weight per bee than the remainder of the swarm, suggesting that bees are optimizing for additional factors besides weight distribution. Despite not having a clear leader, honey bees are able to organize into a swarm that protects the queen and remains stable until scout bees locate a new hive.
Active sleep in flies: the dawn of consciousness
The brain is a prediction machine. Yet the world is never entirely predictable, for any animal. Unexpected events are surprising and this typically evokes prediction error signatures in animal brains. In humans such mismatched expectations are often associated with an emotional response as well. Appropriate emotional responses are understood to be important for memory consolidation, suggesting that valence cues more generally constitute an ancient mechanism designed to potently refine and generalize internal models of the world and thereby minimize prediction errors. On the other hand, abolishing error detection and surprise entirely is probably also maladaptive, as this might undermine the very mechanism that brains use to become better prediction machines. This paradoxical view of brain functions as an ongoing tug-of-war between prediction and surprise suggests a compelling new way to study and understand the evolution of consciousness in animals. I will present approaches to studying attention and prediction in the tiny brain of the fruit fly, Drosophila melanogaster. I will discuss how an ‘active’ sleep stage (termed rapid eye movement – REM – sleep in mammals) may have evolved in the first animal brains as a mechanism for optimizing prediction in motile creatures confronted with constantly changing environments. A role for REM sleep in emotional regulation could thus be better understood as an ancient sleep function that evolved alongside selective attention to maintain an adaptive balance between prediction and surprise. This view of active sleep has some interesting implications for the evolution of subjective awareness and consciousness.
The neural mechanisms for song evaluation in fruit flies
How does the brain decode the meaning of sound signals, such as music and courtship songs? We believe that the fruit fly Drosophila melanogaster is an ideal model for answering this question, as it offers a comprehensive range of tools and assays which allow us to dissect the mechanisms underlying sound perception and evaluation in the brain. During the courtship behavior, male fruit flies emit “courtship songs” by vibrating their wings. Interestingly, the fly song has a species-specific rhythm, which indeed increases the female’s receptivity for copulation as well as male’s courtship behavior itself. How song signals, especially the species-specific sound rhythm, are evaluated in the fly brain? To tackle this question, we are exploring the features of the fly auditory system systematically. In this lecture, I will talk about our recent findings on the neural basis for song evaluation in fruit flies.
Parp mutations protect from mitochondrial toxicity in Alzheimer’s disease
Alzheimer’s disease is the most common age-related neurodegenerative disorder. Familial forms of Alzheimer’s disease associated with the accumulation of a toxic form of amyloid-β (Aβ) peptides are linked to mitochondrial impairment. The coenzyme nicotinamide adenine dinucleotide (NAD+) is essential for both mitochondrial bioenergetics and nuclear DNA repair through NAD+-consuming poly (ADP-ribose) polymerases (PARPs). Here, we analysed the metabolomic changes in flies over-expressing Aβ and showed a decrease of metabolites associated with nicotinate and nicotinamide metabolism, which is critical for mitochondrial function in neurons. We show that increasing the bioavailability of NAD+ protects against Aβ toxicity. Pharmacological supplementation using NAM, a form of vitamin B that acts as a precursor for NAD+ or a genetic mutation of PARP rescues mitochondrial defects, protects neurons against degeneration and reduces behavioural impairments in a fly model of Alzheimer’s disease. Next, we looked at links between PARP polymorphisms and vitamin B intake in patients with Alzheimer’s disease. We show that polymorphisms in the human PARP1 gene or the intake of vitamin B, are associated with a decrease in the risk and severity of Alzheimer’s disease. We suggest that enhancing the availability of NAD+ by either vitamin B supplements or the inhibition of NAD+-dependent enzymes, such as PARPs are potential therapies for Alzheimer’s disease.
Connectome and task predict neural activity across the fly visual system
Bernstein Conference 2024
Investigating the role of recurrent connectivity in connectome-constrained and task-optimized models of the fruit fly’s motion pathway
Bernstein Conference 2024
Flygenvectors: The spatial and temporal structure of neural activity across the fly brain
COSYNE 2022
A feedback model for predicting targeted perturbations of proprioceptors during fly walking
COSYNE 2022
A feedback model for predicting targeted perturbations of proprioceptors during fly walking
COSYNE 2022
Flygenvectors: The spatial and temporal structure of neural activity across the fly brain
COSYNE 2022
Nonlocal Spatiotemporal Representation in the Hippocampus of Freely Flying Bats
COSYNE 2022
Nonlocal Spatiotemporal Representation in the Hippocampus of Freely Flying Bats
COSYNE 2022
Object × position coding in the entorhinal cortex of flying bats
COSYNE 2022
Object × position coding in the entorhinal cortex of flying bats
COSYNE 2022
A two-way luminance gain control in the fly brain ensures luminance invariance in dynamic vision
COSYNE 2022
A two-way luminance gain control in the fly brain ensures luminance invariance in dynamic vision
COSYNE 2022
A visuomotor pathway underlies small object avoidance in flying Drosophila
COSYNE 2022
A visuomotor pathway underlies small object avoidance in flying Drosophila
COSYNE 2022
Directly comparing fly and mouse visual systems reveals algorithmic similarities for motion detection
COSYNE 2023
Does the fly’s brain center for vector navigation know that the world is 3D?
COSYNE 2023
Inferring neural codes from natural behavior in fruit fly social communication
COSYNE 2023
Peripheral non-synaptic inhibition facilitates odor processing in fly brains
COSYNE 2023
The space of finite ring attractors: from theoretical principles to the fly compass system
COSYNE 2023
Connectome simulations reveal a putative central pattern generator microcircuit for fly walking
COSYNE 2025
Deep imitation learning for neuromechanical control: realistic walking in an embodied fly
COSYNE 2025
Recurrent connectivity supports motion detection in connectome-constrained models of fly vision
COSYNE 2025
Testing the power and limitations of predictive connectomics in the fly visual system
COSYNE 2025
Unravelling the brain circuits underlying target pursuit in the hoverfly
COSYNE 2025
Defining the behavioral repertoire instructed by the fly’s ‘cockpit’
FENS Forum 2024
Defining the synapse-specific landscape of cell adhesion molecules in the fly visual system
FENS Forum 2024