Fmri Study
fMRI study
Representations of people in the brain
Faces and voices convey much of the non-verbal information that we use when communicating with other people. We look at faces and listen to voices to recognize others, understand how they are feeling, and decide how to act. Recent research in my lab aims to investigate whether there are similar coding mechanisms to represent faces and voices, and whether there are brain regions that integrate information across the visual and auditory modalities. In the first part of my talk, I will focus on an fMRI study in which we found that a region of the posterior STS exhibits modality-general representations of familiar people that can be similarly driven by someone’s face and their voice (Tsantani et al. 2019). In the second part of the talk, I will describe our recent attempts to shed light on the type of information that is represented in different face-responsive brain regions (Tsantani et al., 2021).
Age-related dedifferentiation across representational levels and their relation to memory performance
Episodic memory performance decreases with advancing age. According to theoretical models, such memory decline might be a consequence of age-related reductions in the ability to form distinct neural representations of our past. In this talk, I want to present our new age-comparative fMRI study investigating age-related neural dedifferentiation across different representational levels. By combining univariate analyses and searchlight pattern similarity analyses, we found that older adults show reduced category selective processing in higher visual areas, less specific item representations in occipital regions and less stable item representations. Dedifferentiation on all these representational levels was related to memory performance, with item specificity being the strongest contributor. Overall, our results emphasize that age-related dedifferentiation can be observed across the entire cortical hierarchy which may selectively impair memory performance depending on the memory task.
Mechanisms of Perceptual Learning
Perceptual learning (PL) is defined as long-term performance improvement on a perceptual task as a result of perceptual experience (Sasaki, Nanez& Watanabe, 2011, Nat Rev Neurosci, 2011). We first found that PL occurs for task-irrelevant and subthreshold features and that pairing task-irrelevant features with rewards is the key to form task-irrelevant PL (TIPL) (Watanabe, Nanez & Sasaki, Nature, 2001; Watanabe et al, 2002, Nature Neuroscience; Seitz & Watanabe, Nature, 2003; Seitz, Kim & Watanabe, 2009, Neuron; Shibata et al, 2011, Science). These results suggest that PL occurs as a result of interactions between reinforcement and bottom-up stimulus signals (Seitz & Watanabe, 2005, TICS). On the other hand, fMRI study results indicate that lateral prefrontal cortex fails to detect and thus to suppress subthreshold task-irrelevant signals. This leads to the paradoxical effect that a signal that is below, but close to, one’s discrimination threshold ends up being stronger than suprathreshold signals (Tsushima, Sasaki & Watanabe, 2006, Science). We confirmed this mechanism with the following results: Task-irrelevant learning occurs only when a presented feature is under and close to the threshold with younger individuals (Tsushima et al, 2009, Current Biol), whereas with older individuals who tend to have less inhibitory control task-irrelevant learning occurs with a feature whose signal is much greater than the threshold (Chang et al, 2014, Current Biol). From all of these results, we conclude that attention and reward play important but different roles in PL. I will further discuss different stages and phases in mechanisms of PL (Seitz et al, 2005, PNAS; Yotsumoto, Watanabe & Sasaki, Neuron, 2008; Yotsumoto et al, Curr Biol, 2009; Watanabe & Sasaki, 2015, Ann Rev Psychol; Shibata et al, 2017, Nat Neurosci; Tamaki et al, 2020, Nat Neurosci).
fMRI study reveals enhanced top-down and bottom-up processes in schizophrenia
COSYNE 2025
Cognitive map formation and virtual navigation in blind subjects: An fMRI study
FENS Forum 2024
A connectome-based fMRI study of spatial reasoning in stroke
FENS Forum 2024
Effects of performance and additional punishment on auditory-evoked brain activation patterns in discrimination learning – An auditory fMRI study in the Mongolian gerbil
FENS Forum 2024
Investigating strategies to account gender differences in mental rotation tasks - An fMRI study
FENS Forum 2024