Function
function approximator
Learning Relational Rules from Rewards
Humans perceive the world in terms of objects and relations between them. In fact, for any given pair of objects, there is a myriad of relations that apply to them. How does the cognitive system learn which relations are useful to characterize the task at hand? And how can it use these representations to build a relational policy to interact effectively with the environment? In this paper we propose that this problem can be understood through the lens of a sub-field of symbolic machine learning called relational reinforcement learning (RRL). To demonstrate the potential of our approach, we build a simple model of relational policy learning based on a function approximator developed in RRL. We trained and tested our model in three Atari games that required to consider an increasingly number of potential relations: Breakout, Pong and Demon Attack. In each game, our model was able to select adequate relational representations and build a relational policy incrementally. We discuss the relationship between our model with models of relational and analogical reasoning, as well as its limitations and future directions of research.
Spiking Neural networks as Universal Function Approximators - SNUFA 2021
Like last year this online workshop brings together researchers in the field to present their work and discuss ways of translating these findings into a better understanding of neural circuits. Topics include artificial and biologically plausible learning algorithms and the dissection of trained spiking circuits toward understanding neural processing. We have a manageable number of talks with ample time for discussions. This year’s executive committee comprises Chiara Bartolozzi, Sander Bohté, Dan Goodman, and Friedemann Zenke.
Workshop on "Spiking neural networks as universal function approximators: Learning algorithms and applications
This is a two-day workshop. Sign up and see titles and abstracts on website.