Functional Segregation
functional segregation
Functional segregation of rostral and caudal hippocampus in associative memory
It has long been established that the hippocampus plays a crucial role for episodic memory. As opposed to the modular approach, now it is generally assumed that being a complex structure, the HC performs multiplex interconnected functions, whose hierarchical organization provides basis for the higher cognitive functions such as semantics-based encoding and retrieval. However, the «where, when and how» properties of distinct memory aspects within and outside the HC are still under debate. Here we used a visual associative memory task as a probe to test the hypothesis about the differential involvement of the rostral and caudal portions of the human hippocampus in memory encoding, recognition and associative recall. In epilepsy patients implanted with stereo-EEG, we show that at retrieval the rostral HC is selectively active for recognition memory, whereas the caudal HC is selectively active for the associative memory. Low frequency desynchronization and high frequency synchronization characterize the temporal dynamic in encoding and retrieval. Therefore, we describe here anatomical segregation in the hippocampal contributions to associative and recognition memory.
A computational explanation for domain specificity in the human brain
Many regions of the human brain conduct highly specific functions, such as recognizing faces, understanding language, and thinking about other people’s thoughts. Why might this domain specific organization be a good design strategy for brains, and what is the origin of domain specificity in the first place? In this talk, I will present recent work testing whether the segregation of face and object perception in human brains emerges naturally from an optimization for both tasks. We trained artificial neural networks on face and object recognition, and found that networks were able to perform both tasks well by spontaneously segregating them into distinct pathways. Critically, networks neither had prior knowledge nor any inductive bias about the tasks. Furthermore, networks optimized on tasks which apparently do not develop specialization in the human brain, such as food or cars, and object categorization showed less task segregation. These results suggest that functional segregation can spontaneously emerge without a task-specific bias, and that the domain-specific organization of the cortex may reflect a computational optimization for the real-world tasks humans solve.