← Back

Future Directions

Topic spotlight
TopicWorld Wide

future directions

Discover seminars, jobs, and research tagged with future directions across World Wide.
10 curated items10 Seminars
Updated over 1 year ago
10 items · future directions
10 results
SeminarNeuroscience

The quest for brain identification

Enrico Amico
Aston University
Mar 20, 2024

In the 17th century, physician Marcello Malpighi observed the existence of distinctive patterns of ridges and sweat glands on fingertips. This was a major breakthrough, and originated a long and continuing quest for ways to uniquely identify individuals based on fingerprints, a technique massively used until today. It is only in the past few years that technologies and methodologies have achieved high-quality measures of an individual’s brain to the extent that personality traits and behavior can be characterized. The concept of “fingerprints of the brain” is very novel and has been boosted thanks to a seminal publication by Finn et al. in 2015. They were among the firsts to show that an individual’s functional brain connectivity profile is both unique and reliable, similarly to a fingerprint, and that it is possible to identify an individual among a large group of subjects solely on the basis of her or his connectivity profile. Yet, the discovery of brain fingerprints opened up a plethora of new questions. In particular, what exactly is the information encoded in brain connectivity patterns that ultimately leads to correctly differentiating someone’s connectome from anybody else’s? In other words, what makes our brains unique? In this talk I am going to partially address these open questions while keeping a personal viewpoint on the subject. I will outline the main findings, discuss potential issues, and propose future directions in the quest for identifiability of human brain networks.

SeminarNeuroscienceRecording

Personality Evaluated: What Do Other People Really Think of You?

Jessie Sun
University of Pennsylvania
Mar 4, 2021

What do other people really think of you? In this talk, I highlight the unique perspective that other people have on the most consequential aspects of our personalities—how we treat others, our best and worst qualities, and our moral character. First, I compare how people thought they behaved with how they actually behaved in everyday life (based on observer ratings of unobtrusive audio recordings; 217 people, 2,519 observations). I show that when people think they are being kind (vs. rude), others do not necessarily agree. This suggests that people may have blind spots about how well they are treating others in the moment. Next, I compare what 463 people thought their own best and worst traits were with what their friends thought about them. The results reveal that friends are more likely to point out flaws in the prosocial and moral domains (e.g., “inconsiderate”, “selfish”, “manipulative”) than are people themselves. Does this imply that others might want us to be more moral? To find out, I compare what targets (N = 800) want to change about their own personalities with what their close others (N = 958) want to change about them. The results show that people don’t particularly want to be more moral, and their close others don’t want them to be more moral, either. I conclude with future directions on honest feedback as a pathway to self-insight and, ultimately, self-improvement.

SeminarNeuroscience

K+ Channel Gain of Function in Epilepsy, from Currents to Networks

Matthew Weston
University of Vermont
Oct 20, 2020

Recent human gene discovery efforts show that gain-of-function (GOF) variants in the KCNT1gene, which encodes a Na+-activated K+ channel subunit, cause severe epilepsies and other neurodevelopmental disorders. Although the impact of these variants on the biophysical properties of the channels is well characterized, the mechanisms that link channel dysfunction to cellular and network hyperexcitability and human disease are unknown. Furthermore, precision therapies that correct channel biophysics in non-neuronal cells have had limited success in treating human disease, highlighting the need for a deeper understanding of how these variants affect neurons and networks. To address this gap, we developed a new mouse model with a pathogenic human variant knocked into the mouse Kcnt1gene. I will discuss our findings on the in vivo phenotypes of this mouse, focusing on our characterization of epileptiform neural activity using electrophysiology and widefield Ca++imaging. I will also talk about our investigations at the synaptic, cellular, and circuit levels, including the main finding that cortical inhibitory neurons in this model show a reduction in intrinsic excitability and action potential generation. Finally, I will discuss future directions to better understand the mechanisms underlying the cell-type specific effects, as well as the link between the cellular and network level effects of KCNT1 GOF.

SeminarNeuroscience

Exploring the Genetics of Parkinson's Disease: Past, Present, and Future

Andrew Singleton
National Institute on Aging
Jul 27, 2020

In this talk, Dr Singleton will discuss the progress made so far in understanding the genetic basis of Parkinson’s disease. He will cover the history of discovery from the first identification of disease causing mutations to the state of knowledge in the field today, more that 20 years after that initial discovery. He will then discuss current initiatives and the promise of these for informing the understanding and treatment of Parkinson’s disease. Lastly, Dr Singleton will talk about current gaps in research and knowledge and working together to fill these.