Gambling
gambling
An economic decision-making model of anticipated surprise with dynamic expectation
When making decision under risk, people often exhibit behaviours that classical economic theories cannot explain. Newer models that attempt to account for these ‘irrational’ behaviours often lack neuroscience bases and require the introduction of subjective and problem-specific constructs. Here, we present a decision-making model inspired by the prediction error signals and introspective neuronal replay reported in the brain. In the model, decisions are chosen based on ‘anticipated surprise’, defined by a nonlinear average of the differences between individual outcomes and a reference point. The reference point is determined by the expected value of the possible outcomes, which can dynamically change during the mental simulation of decision-making problems involving sequential stages. Our model elucidates the contribution of each stage to the appeal of available options in a decision-making problem. This allows us to explain several economic paradoxes and gambling behaviours. Our work could help bridge the gap between decision-making theories in economics and neurosciences.
In-Love with Addiction Neuroscience
In this talk series, addiction neuroscientists from across the world share their personal stories/experiences on the beauty of addiction neuroscience and how/why they have decided to invest their scientific life in this field. We hope that this talk series would encourage and support a new generation of young and passionate addiction neuroscientists in different countries to revolutionize the field of addiction medicine.
Delineating Reward/Avoidance Decision Process in the Impulsive-compulsive Spectrum Disorders through a Probabilistic Reversal Learning Task
Impulsivity and compulsivity are behavioural traits that underlie many aspects of decision-making and form the characteristic symptoms of Obsessive Compulsive Disorder (OCD) and Gambling Disorder (GD). The neural underpinnings of aspects of reward and avoidance learning under the expression of these traits and symptoms are only partially understood. " "The present study combined behavioural modelling and neuroimaging technique to examine brain activity associated with critical phases of reward and loss processing in OCD and GD. " "Forty-two healthy controls (HC), forty OCD and twenty-three GD participants were recruited in our study to complete a two-session reinforcement learning (RL) task featuring a “probability switch (PS)” with imaging scanning. Finally, 39 HC (20F/19M, 34 yrs +/- 9.47), 28 OCD (14F/14M, 32.11 yrs ±9.53) and 16 GD (4F/12M, 35.53yrs ± 12.20) were included with both behavioural and imaging data available. The functional imaging was conducted by using 3.0-T SIEMENS MAGNETOM Skyra syngo MR D13C at Monash Biomedical Imaging. Each volume compromised 34 coronal slices of 3 mm thickness with 2000 ms TR and 30 ms TE. A total of 479 volumes were acquired for each participant in each session in an interleaved-ascending manner. " " The standard Q-learning model was fitted to the observed behavioural data and the Bayesian model was used for the parameter estimation. Imaging analysis was conducted using SPM12 (Welcome Department of Imaging Neuroscience, London, United Kingdom) in the Matlab (R2015b) environment. The pre-processing commenced with the slice timing, realignment, normalization to MNI space according to T1-weighted image and smoothing with a 8 mm Gaussian kernel. " " The frontostriatal brain circuit including the putamen and medial orbitofrontal (mOFC) were significantly more active in response to receiving reward and avoiding punishment compared to receiving an aversive outcome and missing reward at 0.001 with FWE correction at cluster level; While the right insula showed greater activation in response to missing rewards and receiving punishment. Compared to healthy participants, GD patients showed significantly lower activation in the left superior frontal and posterior cingulum at 0.001 for the gain omission. " " The reward prediction error (PE) signal was found positively correlated with the activation at several clusters expanding across cortical and subcortical region including the striatum, cingulate, bilateral insula, thalamus and superior frontal at 0.001 with FWE correction at cluster level. The GD patients showed a trend of decreased reward PE response in the right precentral extending to left posterior cingulate compared to controls at 0.05 with FWE correction. " " The aversive PE signal was negatively correlated with brain activity in regions including bilateral thalamus, hippocampus, insula and striatum at 0.001 with FWE correction. Compared with the control group, GD group showed an increased aversive PE activation in the cluster encompassing right thalamus and right hippocampus, and also the right middle frontal extending to the right anterior cingulum at 0.005 with FWE correction. " " Through the reversal learning task, the study provided a further support of the dissociable brain circuits for distinct phases of reward and avoidance learning. Also, the OCD and GD is characterised by aberrant patterns of reward and avoidance processing.
Chronic corticosterone administration and decision-making in female mice in an operant mouse gambling task
FENS Forum 2024
Sexual dimorphism in compulsive alcohol drinking and its impact on pathological gambling and social dominance: A preclinical study
FENS Forum 2024