Genetic Basis
genetic basis
Epileptogenesis in the developing brain:understanding a moving target
The origins, mechanisms and consequences of epilepsy in the developing brain are incompletely understood. Many developmental epilepsies have a genetic basis and their mechanisms stem from deficits in the function of one or numerous genes. Others, such as those that follow prolonged febrile seizures or severe birth asphyxia in a ‘normal’ brain may depend on the interaction of the insult with the rapidly evolving brain cells and circuits. Yet, how early-life insults may provoke epilepsy is unclear, and requires multiple levels of analysis: behavior, circuits, cells [neurons, glia] and molecules. Here we discuss developmental epileptogenesis, addressing some of its special features: the epilepsy phenotype, the effects insults on the maturation of brain circuits, the role of neuron-glia-neuron communication in cellular and circuit refinement, and how transient epileptogenic insults provoke enduring changes in the structure, connectivity and function of salient neuronal populations. We will highlight resolved questions- and the many unresolved issues that require tackling in 2022 and beyond.
Exploring the neurogenetic basis of speech, language, and vocal communication
Malformation of cortical development: the genesis of epileptogenic networks
Malformations of cortical development (MCDs) result from alterations of one or combined developmental steps, including progenitors proliferation, neuronal migration and differentiation. They are important cause of childhood epilepsy and frequently associate cognitive deficits and behavioral alterations. Though the genetic basis of MCDs have known prominent progress during the past decade, including the identification of somatic, mosaic mutations responsible for focal MCDs, the pathophysiological mechanisms linking malformations to epileptogenesis remain elusive. In this seminar I will present data from my team and from the literature addressing this topic in two different MCDs types, the subcortical band heterotopia as a model of cortical migration defect and mTOR- dependent MCDs , that characterize by cortical dyslamination and neuronal differentiation defects.
Exploring the Genetics of Parkinson's Disease: Past, Present, and Future
In this talk, Dr Singleton will discuss the progress made so far in understanding the genetic basis of Parkinson’s disease. He will cover the history of discovery from the first identification of disease causing mutations to the state of knowledge in the field today, more that 20 years after that initial discovery. He will then discuss current initiatives and the promise of these for informing the understanding and treatment of Parkinson’s disease. Lastly, Dr Singleton will talk about current gaps in research and knowledge and working together to fill these.