← Back

Heterogeneity

Topic spotlight
TopicWorld Wide

heterogeneity

Discover seminars, jobs, and research tagged with heterogeneity across World Wide.
58 curated items39 Seminars17 ePosters2 Positions
Updated 2 days ago
58 items · heterogeneity
58 results
Position

N/A

Imperial College London
Imperial College London, Department of Electrical and Electronic Engineering
Dec 5, 2025

We are seeking a PhD candidate to join us at Imperial College London. This position offers a unique opportunity to explore the cutting-edge intersection of neuroscience and artificial intelligence, with the broad goal to investigate shared principles of computation within both artificial and biological intelligent systems.

PositionComputational Neuroscience

Dr. Fleur Zeldenrust

Donders Institute for Brain, Cognition and Behaviour, Radboud University
Nijmegen, the Netherlands
Dec 5, 2025

For the Vidi project ‘Top-down neuromodulation and bottom-up network computation,’ we seek a postdoc to study neuromodulators in efficient spike-coding networks. Using our lab’s data on dopamine, acetylcholine, and serotonin from the mouse barrel cortex, you’ll derive models connecting single cells, networks, and behavior. The aim of this project is to explain the effects of neuromodulation on task performance in biologically realistic spiking recurrent neural networks (SRNNs). You will use the efficient spike coding framework, in which a network is not trained by a learning paradigm but deduced using mathematically rigorous rules that enforce efficient coding (i.e. maximally informative spikes). You will study how the network’s structural properties such as neural heterogeneity influence decoding performance and efficiency. You will incorporate realistic network properties of the (barrel) cortex based on our lab’s measurements and incorporate the cellular effects of dopamine, acetylcholine and serotonin we have measured over the past years into the network, to investigate their effects on representations, network activity measures such as dimensionality, and decoding performance. You will build on the single cell data, network models and analysis methods available in our group, and your results will be incorporated into our group’s further research to develop and validate efficient coding models of (somatosensory) perception. Therefore, we are looking for a team player who is willing to learn from the other group members and to share their knowledge with them.

SeminarNeuroscience

Beyond Homogeneity: Characterizing Brain Disorder Heterogeneity through EEG and Normative Modeling

Mahmoud Hassan
Founder and CEO of MINDIG, Rennes, France. Adjunct professor, Reykjavik University, Reykjavik, Iceland.
Oct 8, 2024

Electroencephalography (EEG) has been thoroughly studied for decades in psychiatry research. Yet its integration into clinical practice as a diagnostic/prognostic tool remains unachieved. We hypothesize that a key reason is the underlying patient's heterogeneity, overlooked in psychiatric EEG research relying on a case-control approach. We combine HD-EEG with normative modeling to quantify this heterogeneity using two well-established and extensively investigated EEG characteristics -spectral power and functional connectivity- across a cohort of 1674 patients with attention-deficit/hyperactivity disorder, autism spectrum disorder, learning disorder, or anxiety, and 560 matched controls. Normative models showed that deviations from population norms among patients were highly heterogeneous and frequency-dependent. Deviation spatial overlap across patients did not exceed 40% and 24% for spectral and connectivity, respectively. Considering individual deviations in patients has significantly enhanced comparative analysis, and the identification of patient-specific markers has demonstrated a correlation with clinical assessments, representing a crucial step towards attaining precision psychiatry through EEG.

SeminarNeuroscience

Towards Human Systems Biology of Sleep/Wake Cycles: Phosphorylation Hypothesis of Sleep

Hiroki R. Ueda
Graduate School of Medicine, University of Tokyo
Jan 14, 2024

The field of human biology faces three major technological challenges. Firstly, the causation problem is difficult to address in humans compared to model animals. Secondly, the complexity problem arises due to the lack of a comprehensive cell atlas for the human body, despite its cellular composition. Lastly, the heterogeneity problem arises from significant variations in both genetic and environmental factors among individuals. To tackle these challenges, we have developed innovative approaches. These include 1) mammalian next-generation genetics, such as Triple CRISPR for knockout (KO) mice and ES mice for knock-in (KI) mice, which enables causation studies without traditional breeding methods; 2) whole-body/brain cell profiling techniques, such as CUBIC, to unravel the complexity of cellular composition; and 3) accurate and user-friendly technologies for measuring sleep and awake states, exemplified by ACCEL, to facilitate the monitoring of fundamental brain states in real-world settings and thus address heterogeneity in human.

SeminarPsychology

Investigating face processing impairments in Developmental Prosopagnosia: Insights from behavioural tasks and lived experience

Judith Lowes
University of Stirling
Nov 13, 2023

The defining characteristic of development prosopagnosia is severe difficulty recognising familiar faces in everyday life. Numerous studies have reported that the condition is highly heterogeneous in terms of both presentation and severity with many mixed findings in the literature. I will present behavioural data from a large face processing test battery (n = 24 DPs) as well as some early findings from a larger survey of the lived experience of individuals with DP and discuss how insights from individuals' real-world experience can help to understand and interpret lab-based data.

SeminarNeuroscience

X-linked mosaicism and behavioral heterogeneity in Rett syndrome

Keerthi Krishnan
University of Tennessee, Knoxville
Oct 31, 2023
SeminarNeuroscienceRecording

Immunosuppression for Parkinson's disease - a new therapeutic strategy?

Caroline Williams-Gray
Department of Clinical Neurosciences, University of Cambridge
May 29, 2023

Caroline Williams-Gray is a Principal Research Associate in the Department of Clinical Neurosciences, University of Cambridge, and an honorary consultant neurologist specializing in Parkinson’s disease and movement disorders. She leads a translational research group investigating the clinical and biological heterogeneity of PD, with the ultimate goal of developing more targeted therapies for different Parkinson’s subtypes. Her recent work has focused on the theory that the immune system plays a significant role in mediating the heterogeneity of PD and its progression. Her lab is investigating this using blood and CSF -based immune markers, PET neuroimaging and neuropathology in stratified PD cohorts; and she is leading the first randomized controlled trial repurposing a peripheral immunosuppressive drug (azathioprine) to slow the progression of PD.

SeminarNeuroscienceRecording

The strongly recurrent regime of cortical networks

David Dahmen
Jülich Research Centre, Germany
Mar 28, 2023

Modern electrophysiological recordings simultaneously capture single-unit spiking activities of hundreds of neurons. These neurons exhibit highly complex coordination patterns. Where does this complexity stem from? One candidate is the ubiquitous heterogeneity in connectivity of local neural circuits. Studying neural network dynamics in the linearized regime and using tools from statistical field theory of disordered systems, we derive relations between structure and dynamics that are readily applicable to subsampled recordings of neural circuits: Measuring the statistics of pairwise covariances allows us to infer statistical properties of the underlying connectivity. Applying our results to spontaneous activity of macaque motor cortex, we find that the underlying network operates in a strongly recurrent regime. In this regime, network connectivity is highly heterogeneous, as quantified by a large radius of bulk connectivity eigenvalues. Being close to the point of linear instability, this dynamical regime predicts a rich correlation structure, a large dynamical repertoire, long-range interaction patterns, relatively low dimensionality and a sensitive control of neuronal coordination. These predictions are verified in analyses of spontaneous activity of macaque motor cortex and mouse visual cortex. Finally, we show that even microscopic features of connectivity, such as connection motifs, systematically scale up to determine the global organization of activity in neural circuits.

SeminarNeuroscienceRecording

Effect of the intratumoral microbiota on spatial and cellular heterogeneity in cancer

Jorge L. Galeano Niño
Fred Hutchinson Cancer Research Center
Feb 15, 2023
SeminarNeuroscienceRecording

PHGDH heterogeneity potentiates cancer cell dissemination and metastasis

Patricia Altea Manzano
VIB-KU Leuven Center for Cancer Biology
Feb 8, 2023
SeminarNeuroscienceRecording

Dynamics of cortical circuits: underlying mechanisms and computational implications

Alessandro Sanzeni
Bocconi University, Milano
Jan 24, 2023

A signature feature of cortical circuits is the irregularity of neuronal firing, which manifests itself in the high temporal variability of spiking and the broad distribution of rates. Theoretical works have shown that this feature emerges dynamically in network models if coupling between cells is strong, i.e. if the mean number of synapses per neuron K is large and synaptic efficacy is of order 1/\sqrt{K}. However, the degree to which these models capture the mechanisms underlying neuronal firing in cortical circuits is not fully understood. Results have been derived using neuron models with current-based synapses, i.e. neglecting the dependence of synaptic current on the membrane potential, and an understanding of how irregular firing emerges in models with conductance-based synapses is still lacking. Moreover, at odds with the nonlinear responses to multiple stimuli observed in cortex, network models with strongly coupled cells respond linearly to inputs. In this talk, I will discuss the emergence of irregular firing and nonlinear response in networks of leaky integrate-and-fire neurons. First, I will show that, when synapses are conductance-based, irregular firing emerges if synaptic efficacy is of order 1/\log(K) and, unlike in current-based models, persists even under the large heterogeneity of connections which has been reported experimentally. I will then describe an analysis of neural responses as a function of coupling strength and show that, while a linear input-output relation is ubiquitous at strong coupling, nonlinear responses are prominent at moderate coupling. I will conclude by discussing experimental evidence of moderate coupling and loose balance in the mouse cortex.

SeminarNeuroscienceRecording

Heterogeneity and non-random connectivity in reservoir computing

Abigail Morrison
Jülich Research Centre & RWTH Aachen University, Germany
May 31, 2022

Reservoir computing is a promising framework to study cortical computation, as it is based on continuous, online processing and the requirements and operating principles are compatible with cortical circuit dynamics. However, the framework has issues that limit its scope as a generic model for cortical processing. The most obvious of these is that, in traditional models, learning is restricted to the output projections and takes place in a fully supervised manner. If such an output layer is interpreted at face value as downstream computation, this is biologically questionable. If it is interpreted merely as a demonstration that the network can accurately represent the information, this immediately raises the question of what would be biologically plausible mechanisms for transmitting the information represented by a reservoir and incorporating it in downstream computations. Another major issue is that we have as yet only modest insight into how the structural and dynamical features of a network influence its computational capacity, which is necessary not only for gaining an understanding of those features in biological brains, but also for exploiting reservoir computing as a neuromorphic application. In this talk, I will first demonstrate a method for quantifying the representational capacity of reservoirs without training them on tasks. Based on this technique, which allows systematic comparison of systems, I then present our recent work towards understanding the roles of heterogeneity and connectivity patterns in enhancing both the computational properties of a network and its ability to reliably transmit to downstream networks. Finally, I will give a brief taster of our current efforts to apply the reservoir computing framework to magnetic systems as an approach to neuromorphic computing.

SeminarNeuroscienceRecording

A draft connectome for ganglion cell types of the mouse retina

David Berson
Brown University
May 15, 2022

The visual system of the brain is highly parallel in its architecture. This is clearly evident in the outputs of the retina, which arise from neurons called ganglion cells. Work in our lab has shown that mammalian retinas contain more than a dozen distinct types of ganglion cells. Each type appears to filter the retinal image in a unique way and to relay this processed signal to a specific set of targets in the brain. My students and I are working to understand the meaning of this parallel organization through electrophysiological and anatomical studies. We record from light-responsive ganglion cells in vitro using the whole-cell patch method. This allows us to correlate directly the visual response properties, intrinsic electrical behavior, synaptic pharmacology, dendritic morphology and axonal projections of single neurons. Other methods used in the lab include neuroanatomical tracing techniques, single-unit recording and immunohistochemistry. We seek to specify the total number of ganglion cell types, the distinguishing characteristics of each type, and the intraretinal mechanisms (structural, electrical, and synaptic) that shape their stimulus selectivities. Recent work in the lab has identified a bizarre new ganglion cell type that is also a photoreceptor, capable of responding to light even when it is synaptically uncoupled from conventional (rod and cone) photoreceptors. These ganglion cells appear to play a key role in resetting the biological clock. It is just this sort of link, between a specific cell type and a well-defined behavioral or perceptual function, that we seek to establish for the full range of ganglion cell types. My research concerns the structural and functional organization of retinal ganglion cells, the output cells of the retina whose axons make up the optic nerve. Ganglion cells exhibit great diversity both in their morphology and in their responses to light stimuli. On this basis, they are divisible into a large number of types (>15). Each ganglion-cell type appears to send its outputs to a specific set of central visual nuclei. This suggests that ganglion cell heterogeneity has evolved to provide each visual center in the brain with pre-processed representations of the visual scene tailored to its specific functional requirements. Though the outline of this story has been appreciated for some time, it has received little systematic exploration. My laboratory is addressing in parallel three sets of related questions: 1) How many types of ganglion cells are there in a typical mammalian retina and what are their structural and functional characteristics? 2) What combination of synaptic networks and intrinsic membrane properties are responsible for the characteristic light responses of individual types? 3) What do the functional specializations of individual classes contribute to perceptual function or to visually mediated behavior? To pursue these questions, we label retinal ganglion cells by retrograde transport from the brain; analyze in vitro their light responses, intrinsic membrane properties and synaptic pharmacology using the whole-cell patch clamp method; and reveal their morphology with intracellular dyes. Recently, we have discovered a novel ganglion cell in rat retina that is intrinsically photosensitive. These ganglion cells exhibit robust light responses even when all influences from classical photoreceptors (rods and cones) are blocked, either by applying pharmacological agents or by dissociating the ganglion cell from the retina. These photosensitive ganglion cells seem likely to serve as photoreceptors for the photic synchronization of circadian rhythms, the mechanism that allows us to overcome jet lag. They project to the circadian pacemaker of the brain, the suprachiasmatic nucleus of the hypothalamus. Their temporal kinetics, threshold, dynamic range, and spectral tuning all match known properties of the synchronization or "entrainment" mechanism. These photosensitive ganglion cells innervate various other brain targets, such as the midbrain pupillary control center, and apparently contribute to a host of behavioral responses to ambient lighting conditions. These findings help to explain why circadian and pupillary light responses persist in mammals, including humans, with profound disruption of rod and cone function. Ongoing experiments are designed to elucidate the phototransduction mechanism, including the identity of the photopigment and the nature of downstream signaling pathways. In other studies, we seek to provide a more detailed characterization of the photic responsiveness and both morphological and functional evidence concerning possible interactions with conventional rod- and cone-driven retinal circuits. These studies are of potential value in understanding and designing appropriate therapies for jet lag, the negative consequences of shift work, and seasonal affective disorder.

SeminarNeuroscienceRecording

Dissecting the neural circuits underlying prefrontal regulation of reward and threat responsivity in a primate

Angela Roberts
Department of Physiology, Development and Neuroscience, University of Cambridge
Feb 14, 2022

Gaining insight into the overlapping neural circuits that regulate positive and negative emotion is an important step towards understanding the heterogeneity in the aetiology of anxiety and depression and developing new treatment targets. Determining the core contributions of the functionally heterogenous prefrontal cortex to these circuits is especially illuminating given its marked dysregulation in affective disorders. This presentation will review a series of studies in a new world monkey, the common marmoset, employing pathway-specific chemogenetics, neuroimaging, neuropharmacology and behavioural and cardiovascular analysis to dissect out prefrontal involvement in the regulation of both positive and negative emotion. Highlights will include the profound shift of sensitivity away from reward and towards threat induced by localised activations within distinct regions of vmPFC, namely areas 25 and 14 as well as the opposing contributions of this region, compared to orbitofrontal and dorsolateral prefrontal cortex, in the overall responsivity to threat. Ongoing follow-up studies are identifying the distinct downstream pathways that mediate some of these effects as well as their differential sensitivity to rapidly acting anti-depressants.

SeminarNeuroscience

Multimodal imaging in Dementia with Lewy bodies

Kejal Kantarci
Mayo Clinic
Feb 13, 2022

Dementia with Lewy bodies (DLB) is a synucleinopathy but more than half of patients with DLB also have varying degrees of tau and amyloid-β co-pathology. Identifying and tracking the pathologic heterogeneity of DLB with multi-modal biomarkers is critical for the design of clinical trials that target each pathology early in the disease at a time when prevention or delaying the transition to dementia is possible. Furthermore, longitudinal evaluation of multi-modal biomarkers contributes to our understanding of the type and extent of the pathologic progression and serves to characterize the temporal emergence of the associated phenotypic expression. This talk will focus on the utility of multi-modal imaging in DLB.

SeminarNeuroscienceRecording

Network mechanisms underlying representational drift in area CA1 of hippocampus

Alex Roxin
CRM, Barcelona
Feb 1, 2022

Recent chronic imaging experiments in mice have revealed that the hippocampal code exhibits non-trivial turnover dynamics over long time scales. Specifically, the subset of cells which are active on any given session in a familiar environment changes over the course of days and weeks. While some cells transition into or out of the code after a few sessions, others are stable over the entire experiment. The mechanisms underlying this turnover are unknown. Here we show that the statistics of turnover are consistent with a model in which non-spatial inputs to CA1 pyramidal cells readily undergo plasticity, while spatially tuned inputs are largely stable over time. The heterogeneity in stability across the cell assembly, as well as the decrease in correlation of the population vector of activity over time, are both quantitatively fit by a simple model with Gaussian input statistics. In fact, such input statistics emerge naturally in a network of spiking neurons operating in the fluctuation-driven regime. This correspondence allows one to map the parameters of a large-scale spiking network model of CA1 onto the simple statistical model, and thereby fit the experimental data quantitatively. Importantly, we show that the observed drift is entirely consistent with random, ongoing synaptic turnover. This synaptic turnover is, in turn, consistent with Hebbian plasticity related to continuous learning in a fast memory system.

SeminarNeuroscienceRecording

NMC4 Short Talk: A theory for the population rate of adapting neurons disambiguates mean vs. variance-driven dynamics and explains log-normal response statistics

Laureline Logiaco (she/her)
Columbia University
Dec 1, 2021

Recently, the field of computational neuroscience has seen an explosion of the use of trained recurrent network models (RNNs) to model patterns of neural activity. These RNN models are typically characterized by tuned recurrent interactions between rate 'units' whose dynamics are governed by smooth, continuous differential equations. However, the response of biological single neurons is better described by all-or-none events - spikes - that are triggered in response to the processing of their synaptic input by the complex dynamics of their membrane. One line of research has attempted to resolve this discrepancy by linking the average firing probability of a population of simplified spiking neuron models to rate dynamics similar to those used for RNN units. However, challenges remain to account for complex temporal dependencies in the biological single neuron response and for the heterogeneity of synaptic input across the population. Here, we make progress by showing how to derive dynamic rate equations for a population of spiking neurons with multi-timescale adaptation properties - as this was shown to accurately model the response of biological neurons - while they receive independent time-varying inputs, leading to plausible asynchronous activity in the network. The resulting rate equations yield an insightful segregation of the population's response into dynamics that are driven by the mean signal received by the neural population, and dynamics driven by the variance of the input across neurons, with respective timescales that are in agreement with slice experiments. Further, these equations explain how input variability can shape log-normal instantaneous rate distributions across neurons, as observed in vivo. Our results help interpret properties of the neural population response and open the way to investigating whether the more biologically plausible and dynamically complex rate model we derive could provide useful inductive biases if used in an RNN to solve specific tasks.

SeminarNeuroscienceRecording

NMC4 Short Talk: Resilience through diversity: Loss of neuronal heterogeneity in epileptogenic human tissue impairs network resilience to sudden changes in synchrony

Scott Rich
Kremibl Brain Institute
Nov 30, 2021

A myriad of pathological changes associated with epilepsy, including the loss of specific cell types, improper expression of individual ion channels, and synaptic sprouting, can be recast as decreases in cell and circuit heterogeneity. In recent experimental work, we demonstrated that biophysical diversity is a key characteristic of human cortical pyramidal cells, and past theoretical work has shown that neuronal heterogeneity improves a neural circuit’s ability to encode information. Viewed alongside the fact that seizure is an information-poor brain state, these findings motivate the hypothesis that epileptogenesis can be recontextualized as a process where reduction in cellular heterogeneity renders neural circuits less resilient to seizure onset. By comparing whole-cell patch clamp recordings from layer 5 (L5) human cortical pyramidal neurons from epileptogenic and non-epileptogenic tissue, we present the first direct experimental evidence that a significant reduction in neural heterogeneity accompanies epilepsy. We directly implement experimentally-obtained heterogeneity levels in cortical excitatory-inhibitory (E-I) stochastic spiking network models. Low heterogeneity networks display unique dynamics typified by a sudden transition into a hyper-active and synchronous state paralleling ictogenesis. Mean-field analysis reveals a distinct mathematical structure in these networks distinguished by multi-stability. Furthermore, the mathematically characterized linearizing effect of heterogeneity on input-output response functions explains the counter-intuitive experimentally observed reduction in single-cell excitability in epileptogenic neurons. This joint experimental, computational, and mathematical study showcases that decreased neuronal heterogeneity exists in epileptogenic human cortical tissue, that this difference yields dynamical changes in neural networks paralleling ictogenesis, and that there is a fundamental explanation for these dynamics based in mathematically characterized effects of heterogeneity. These interdisciplinary results provide convincing evidence that biophysical diversity imbues neural circuits with resilience to seizure and a new lens through which to view epilepsy, the most common serious neurological disorder in the world, that could reveal new targets for clinical treatment.

SeminarNeuroscienceRecording

The wonders and complexities of brain microstructure: Enabling biomedical engineering studies combining imaging and models

Daniele Dini
Imperial College London
Nov 22, 2021

Brain microstructure plays a key role in driving the transport of drug molecules directly administered to the brain tissue as in Convection-Enhanced Delivery procedures. This study reports the first systematic attempt to characterize the cytoarchitecture of commissural, long association and projection fiber, namely: the corpus callosum, the fornix and the corona radiata. Ovine samples from three different subjects have been imaged using scanning electron microscope combined with focused ion beam milling. Particular focus has been given to the axons. For each tract, a 3D reconstruction of relatively large volumes (including a significant number of axons) has been performed. Namely, outer axonal ellipticity, outer axonal cross-sectional area and its relative perimeter have been measured. This study [1] provides useful insight into the fibrous organization of the tissue that can be described as composite material presenting elliptical tortuous tubular fibers, leading to a workflow to enable accurate simulations of drug delivery which include well-resolved microstructural features.  As a demonstration of the use of these imaging and reconstruction techniques, our research analyses the hydraulic permeability of two white matter (WM) areas (corpus callosum and fornix) whose three-dimensional microstructure was reconstructed starting from the acquisition of the electron microscopy images. Considering that the white matter structure is mainly composed of elongated and parallel axons we computed the permeability along the parallel and perpendicular directions using computational fluid dynamics [2]. The results show a statistically significant difference between parallel and perpendicular permeability, with a ratio about 2 in both the white matter structures analysed, thus demonstrating their anisotropic behaviour. This is in line with the experimental results obtained using perfusion of brain matter [3]. Moreover, we find a significant difference between permeability in corpus callosum and fornix, which suggests that also the white matter heterogeneity should be considered when modelling drug transport in the brain. Our findings, that demonstrate and quantify the anisotropic and heterogeneous character of the white matter, represent a fundamental contribution not only for drug delivery modelling but also for shedding light on the interstitial transport mechanisms in the extracellular space. These and many other discoveries will be discussed during the talk." "1. https://www.researchsquare.com/article/rs-686577/v1, 2. https://www.pnas.org/content/118/36/e2105328118, 3. https://ieeexplore.ieee.org/abstract/document/9198110

SeminarNeuroscience

Adaptive bottleneck to pallium for sequence memory, path integration and mixed selectivity representation

André Longtin
University of Ottawa
Nov 9, 2021

Spike-driven adaptation involves intracellular mechanisms that are initiated by neural firing and lead to the subsequent reduction of spiking rate followed by a recovery back to baseline. We report on long (>0.5 second) recovery times from adaptation in a thalamic-like structure in weakly electric fish. This adaptation process is shown via modeling and experiment to encode in a spatially invariant manner the time intervals between event encounters, e.g. with landmarks as the animal learns the location of food. These cells also come in two varieties, ones that care only about the time since the last encounter, and others that care about the history of encounters. We discuss how the two populations can share in the task of representing sequences of events, supporting path integration and converting from ego-to-allocentric representations. The heterogeneity of the population parameters enables the representation and Bayesian decoding of time sequences of events which may be put to good use in path integration and hilus neuron function in hippocampus. Finally we discuss how all the cells of this gateway to the pallium exhibit mixed selectivity of social features of their environment. The data and computational modeling further reveal that, in contrast to a long-held belief, these gymnotiform fish are endowed with a corollary discharge, albeit only for social signalling.

SeminarNeuroscienceRecording

Understanding the role of neural heterogeneity in learning

Nicolas Perez-Nieves
Imperial College London
Nov 1, 2021

The brain has a hugely diverse and heterogeneous nature. The exact role of heterogeneity has been relatively little explored as most neural models tend to be largely homogeneous. We trained spiking neural networks with varying degrees of heterogeneity on complex real-world tasks and found that heterogeneity resulted in more stable and robust training and improved training performance, especially for tasks with a higher temporal structure. Moreover, the optimal distribution of parameters found by training was found to be similar to experimental observations. These findings suggest that heterogeneity is not simply a result of noisy biological processes, but it may play a crucial role for learning in complex, changing environments.

SeminarNeuroscienceRecording

Activity dependent myelination: a mechanism for learning and regeneration?

Thóra Káradóttir
WT-MRC Stem Cell Institute, University of Cambridge
Oct 11, 2021

The CNS is responsive to an ever-changing environment. Until recently, studies of neural plasticity focused almost exclusively on functional and structural changes of neuronal synapses. In recent years, myelin plasticity has emerged as a potential modulator of neural networks. Myelination of previously unmyelinated axons, and changes in the structure on already-myelinated axons, can have large effects on network function. The heterogeneity of the extent of how axons in the CNS are myelinated offers diverse scope for dynamic myelin changes to fine-tune neural circuits. The traditionally held view of myelin as a passive insulator of axons is now changing to one of lifelong changes in myelin, modulated by neuronal activity and experience. Myelin, produced by oligodendrocytes (OLs), is essential for normal brain function, as it provides fast signal transmission, promotes synchronization of neuronal signals and helps to maintain neuronal function. OLs differentiate from oligodendrocyte precursor cells (OPCs), which are distributed throughout the adult brain, and myelination continues into late adulthood. OPCs can sense neuronal activity as they receive synaptic inputs from neurons and express voltage-gated ion channels and neurotransmitter receptors, and differentiate into myelinating OLs in response to changes in neuronal activity. This lecture will explore to what extent myelin plasticity occurs in adult animals, whether myelin changes occur in non-motor learning tasks, especially in learning and memory, and questions whether myelin plasticity and myelin regeneration are two sides of the same coin.

SeminarNeuroscience

Digitization as a driving force for collaboration in neuroscience

Michael Denker
Forschungszentrum Jülich
Jun 30, 2021

Many of the collaborations we encounter in our scientific careers are centered on a common idea that can be associated with certain resources, such as a dataset, an algorithm, or a model. All partners in a collaboration need to develop a common understanding of these resources, and need to be able to access them in a simple and unambiguous manner in order to avoid incorrect conclusions especially in highly cross-disciplinary contexts. While digital computers have entered to assist scientific workflows in experiment and simulation for many decades, the high degree of heterogeneity in the field had led to a scattered landscape of highly customized, lab-internal solutions to organizing and managing the resources on a project-by-project basis. Only with the availability of modern technologies such as the semantic web, platforms for collaborative coding or the development of data standards overarching different disciplines, we have tools at our disposal to make resources increasingly more accessible, understandable, and usable. However, without overarching standardization efforts and adaptation of such technologies to the workflows and needs of individual researchers, their adoption by the neuroscience community will be impeded. From the perspective of computational neuroscience, which is inherently dependent on leveraging data and methods across the field of neuroscience for inspiration and validation, I will outline my view on past and present developments towards a more rigorous use of digital resources and how they improved collaboration, and introduce emerging initiatives to support this process in the future (e.g., EBRAINS http://ebrains.eu, NFDI-Neuro http://www.nfdi-neuro.de).

SeminarPhysics of LifeRecording

3D Printing Cellular Communities: Mammalian Cells, Bacteria, And Beyond

Tapomoy Bhattacharjee
Princeton University
Jun 20, 2021

While the motion and collective behavior of cells are well-studied on flat surfaces or in unconfined liquid media, in most natural settings, cells thrive in complex 3D environments. Bioprinting processes are capable of structuring cells in 3D and conventional bioprinting approaches address this challenge by embedding cells in bio-degradable polymer networks. However, heterogeneity in network structure and biodegradation often preclude quantitative studies of cell behavior in specified 3D architectures. Here, I will present a new approach to 3D bioprinting of cellular communities that utilizes jammed, granular polyelectrolyte microgels as a support medium. The self-healing nature of this medium allows the creation of highly precise cellular communities and tissue-like structures by direct injection of cells inside the 3D medium. Further, the transparent nature of this medium enables precise characterization of cellular behavior. I will describe two examples of my work using this platform to study the behavior of two different classes of cells in 3D. First, I will describe how we interrogate the growth, viability, and migration of mammalian cells—ranging from epithelial cells, cancer cells, and T cells—in the 3D pore space. Second, I will describe how we interrogate the migration of E. coli bacteria through the 3D pore space. Direct visualization enables us to reveal a new mode of motility exhibited by individual cells, in stark contrast to the paradigm of run-and-tumble motility, in which cells are intermittently and transiently trapped as they navigate the pore space; further, analysis of these dynamics enables prediction of single-cell transport over large length and time scales. Moreover, we show that concentrated populations of E. coli can collectively migrate through a porous medium—despite being strongly confined—by chemotactically “surfing” a self-generated nutrient gradient. Together, these studies highlight how the jammed microgel medium provides a powerful platform to design and interrogate complex cellular communities in 3D—with implications for tissue engineering, microtissue mechanics, studies of cellular interactions, and biophysical studies of active matter.

SeminarNeuroscienceRecording

Molecular and functional heterogeneity of neural stem cells

Sebastian Jessberger
Brain Research Institute, University of Zurich
May 12, 2021
SeminarNeuroscienceRecording

Challenges in Frontotemporal Dementia: clinical, genetic and pathological heterogeneity

Harro Seelaar
Erasmus Medical Center Rotterdam, the Netherlands
Mar 22, 2021
SeminarNeuroscienceRecording

Organization of Midbrain Serotonin System

Jing Ren
MRC Laboratory of Molecular Biology, Cambridge
Mar 8, 2021

The serotonin system is the most frequently targeted neural system pharmacologically for treating psychiatric disorders, including depression and anxiety. Serotonin neurons of the dorsal and median raphe nuclei (DR, MR) collectively innervate the entire forebrain and midbrain, modulating diverse physiology and behaviour. By using viral-genetic methods, we found that DR serotonin system contains parallel sub-systems that differ in input and output connectivity, physiological response properties, and behavioural functions. To gain a fundamental understanding of the molecular heterogeneity of DR and MR, we used single-cell RNA - sequencing (scRNA-seq) to generate a comprehensive dataset comprising eleven transcriptomically distinct serotonin neuron clusters. We generated novel intersectional viral-genetic tools to access specific subpopulations. Whole-brain axonal projection mapping revealed that the molecular features of these distinct serotonin groups reflect their anatomical organization and provide tools for future exploration of the full projection map of molecularly defined serotonin groups. The molecular architecture of serotonin system lays the foundation for integrating anatomical, neurochemical, physiological, and behavioural functions.

SeminarNeuroscience

Genetic Clues to Autism Heterogeneity

Elise Robinson
Broad Institute
Mar 2, 2021
SeminarNeuroscienceRecording

Neural heterogeneity promotes robust learning

Dan Goodman
Imperial College London
Jan 21, 2021

The brain has a hugely diverse, heterogeneous structure. By contrast, many functional neural models are homogeneous. We compared the performance of spiking neural networks trained to carry out difficult tasks, with varying degrees of heterogeneity. Introducing heterogeneity in membrane and synapse time constants substantially improved task performance, and made learning more stable and robust across multiple training methods, particularly for tasks with a rich temporal structure. In addition, the distribution of time constants in the trained networks closely matches those observed experimentally. We suggest that the heterogeneity observed in the brain may be more than just the byproduct of noisy processes, but rather may serve an active and important role in allowing animals to learn in changing environments.

SeminarNeuroscience

Cognitive Psychometrics: Statistical Modeling of Individual Differences in Latent Processes

Daniel Heck
University Marburg
Jan 12, 2021

Many psychological theories assume that qualitatively different cognitive processes can result in identical responses. Multinomial processing tree (MPT) models allow researchers to disentangle latent cognitive processes based on observed response frequencies. Recently, MPT models have been extended to explicitly account for participant and item heterogeneity. These hierarchical Bayesian MPT models provide the opportunity to connect two traditionally isolated disciplines. Whereas cognitive psychology has often focused on the experimental validation of MPT model parameters on the group level, psychometrics provides the necessary concepts and tools for measuring differences in MPT parameters on the item or person level. Moreover, MPT parameters can be regressed on covariates to model latent processes as a function of personality traits or other person characteristics.

SeminarPhysics of LifeRecording

Heterogeneity in environment, growth, and cell size in Mycobacterium tuberculosis

Bree Aldridge
Tufts University, USA
Nov 2, 2020
SeminarNeuroscience

Using evolutionary algorithms to explore single-cell heterogeneity and microcircuit operation in the hippocampus

Andrea Navas-Olive
Instituto Cajal CSIC
Jul 18, 2020

The hippocampus-entorhinal system is critical for learning and memory. Recent cutting-edge single-cell technologies from RNAseq to electrophysiology are disclosing a so far unrecognized heterogeneity within the major cell types (1). Surprisingly, massive high-throughput recordings of these very same cells identify low dimensional microcircuit dynamics (2,3). Reconciling both views is critical to understand how the brain operates. " "The CA1 region is considered high in the hierarchy of the entorhinal-hippocampal system. Traditionally viewed as a single layered structure, recent evidence has disclosed an exquisite laminar organization across deep and superficial pyramidal sublayers at the transcriptional, morphological and functional levels (1,4,5). Such a low-dimensional segregation may be driven by a combination of intrinsic, biophysical and microcircuit factors but mechanisms are unknown." "Here, we exploit evolutionary algorithms to address the effect of single-cell heterogeneity on CA1 pyramidal cell activity (6). First, we developed a biophysically realistic model of CA1 pyramidal cells using the Hodgkin-Huxley multi-compartment formalism in the Neuron+Python platform and the morphological database Neuromorpho.org. We adopted genetic algorithms (GA) to identify passive, active and synaptic conductances resulting in realistic electrophysiological behavior. We then used the generated models to explore the functional effect of intrinsic, synaptic and morphological heterogeneity during oscillatory activities. By combining results from all simulations in a logistic regression model we evaluated the effect of up/down-regulation of different factors. We found that muyltidimensional excitatory and inhibitory inputs interact with morphological and intrinsic factors to determine a low dimensional subset of output features (e.g. phase-locking preference) that matches non-fitted experimental data.

ePoster

Co-evolved structural and temporal network heterogeneity

Stefan Iacob, Nishant Joshi, Joni Dambre, Fleur Zeldenrust

Bernstein Conference 2024

ePoster

Homeostatic gain modulation drives changes in heterogeneity expressed by neural populations

Daniel Trotter, Taufik Valiante, Jeremie Lefebvre

Bernstein Conference 2024

ePoster

Neuronal Heterogeneity Enhances Sensory Integration and Processing

Arash Golmohammadi, Christian Tetzlaff

Bernstein Conference 2024

ePoster

Cortical dopamine enables deep reinforcement learning and leverages dopaminergic heterogeneity

Jack Lindsey & Ashok Litwin-Kumar

COSYNE 2023

ePoster

Effects of Neural Heterogeneity on the Low-Dimensional Dynamics of Spiking Neural Networks

Richard Gast, Sara A. Solla, Ann Kennedy

COSYNE 2023

ePoster

Heterogeneity in normalization and attentional modulation in a circuit model

Deying Song & Chengcheng Huang

COSYNE 2023

ePoster

Astrocytic calcium response to locomotion in mouse somatosensory cortex: Heterogeneity, reproducibility, and subcellular integration

Anna Fedotova, Alexey Brazhe, Alexey Semyanov

FENS Forum 2024

ePoster

Cholinergic heterogeneity in synchronous and asynchronous states in a whole brain model

Leonardo Dalla Porta, Jan Fousek, Alain Destexhe, Maria V. Sanchez-Vives

FENS Forum 2024

ePoster

Functional heterogeneity of astrocytes in the somatosensory cortex and its role in the processing of different sensory modalities

Andrea Misol Ortiz, Verónica Barranco Maresca, Marta Zaforas, Elena Alonso-Calviño, Elena Fernández-López, Juan Aguilar, Juliana M Rosa

FENS Forum 2024

ePoster

Integrating network activity with transcriptomic profiling in hiPSCs-derived neuronal networks to understand the molecular drivers of functional heterogeneity in the context of neurodevelopmental disorders

Sofia Puvogel, Ummi Ciptasari, Eline van Hugte, Shan Wang, Nicky Scheefhals, Astrid Oudakker, Chantal Schoenmaker, Ka Man Wu, Hans van Bokhoven, Dirk Schubert, Nael Nadif Kasri

FENS Forum 2024

ePoster

Molecular and connective heterogeneity in the Pitx2on population in the mouse superior colliculus

Elena Williams, Ernesto Ciabatti, David Posner, Fabio Morgese, Marco Tripodi

FENS Forum 2024

ePoster

Morphological heterogeneity of CNS border-associated macrophages after photothrombotic stroke

Do-Gyun Kim, Ji-Won Hwang, Ara Cho, Hong Lim Kim, Yuna Oh, Wha-Sun Kang, Dongha Kim, Mun-Yong Lee, Tae-Ryong Riew

FENS Forum 2024

ePoster

Oscillation-based functional connectivity networks reflect the heterogeneity of MDD symptoms

Wenya Liu, Matias Palva, Satu Palva

FENS Forum 2024

ePoster

Probes for the heterogeneity of muscimol binding sites in rat brain

Veronika Mueller, Margot Ernst, Aygul Baykuchkarova, Filip Koniuszewski, Konstantina Bampali, Thomas Seidel, Petra Scholze

FENS Forum 2024

ePoster

Regional and subregional heterogeneity of astrocyte signaling in brain metabolic nucleus

Clara Franco, Cuong Pham, Agnès Chaperon, Christine Mouffle, Vincent Vialou, Bruno Cauli, Caroline Léger, Claire Martin, Serge Luquet, Dongdong Li

FENS Forum 2024

ePoster

Satellite glial cell heterogeneity

Ole Ahlgreen, Lone Pallesen, Mads Hansen, Jonas Baake, Thomas Hybel, Xin Lai, Ishwarya Sankaranarayanan, Johanne Pold, Line Reinert, Søren Paludan, Theodore Price, Christian Vægter

FENS Forum 2024

ePoster

Unveiling astrocyte complexity: Calcium signaling dynamics and morphological heterogeneity

Kerstin Lenk, Aapo Tervonen

FENS Forum 2024