Hippocampal Circuitry
hippocampal circuitry
Dr. Hayder Amin
The position focused on developing a brain-inspired computational model using parallel, non-linear algorithms to investigate the neurogenesis complexity in large-scale systems. The successful applicant will specifically develop a neurogenic-plasticity-inspired bottom-up computational metamodel using our unique experimentally derived multidimensional parameters for a cortico-hippocampal circuit. The project aims to link computational modeling to experimental neuroscience to provide an explicit bidirectional prediction for complex performance and neurogenic network reserve for functional compensation to the brain demands in health and disease.
The functional architecture of the human entorhinal-hippocampal circuitry
Cognitive functions like episodic memory require the formation of cohesive representations. Critical for that process is the entorhinal-hippocampal circuitry’s interaction with cortical information streams and the circuitry’s inner communication. With ultra-high field functional imaging we investigated the functional architecture of the human entorhinal-hippocampal circuitry. We identified an organization that is consistent with convergence of information in anterior and lateral entorhinal subregions and the subiculum/CA1 border while keeping a second route specific for scene processing in a posterior-medial entorhinal subregion and the distal subiculum. Our findings agree with information flow along information processing routes which functionally split the entorhinal-hippocampal circuitry along its transversal axis. My talk will demonstrate how ultra-high field imaging in humans can bridge the gap between anatomical and electrophysiological findings in rodents and our understanding of human cognition. Moreover, I will point out the implications that basic research on functional architecture has for cognitive and clinical research perspectives.
Dynamic maps of a dynamic world
Extensive research has revealed that the hippocampus and entorhinal cortex maintain a rich representation of space through the coordinated activity of place cells, grid cells, and other spatial cell types. Frequently described as a ‘cognitive map’ or a ‘hippocampal map’, these maps are thought to support episodic memory through their instantiation and retrieval. Though often a useful and intuitive metaphor, a map typically evokes a static representation of the external world. However, the world itself, and our experience of it, are intrinsically dynamic. In order to make the most of their maps, a navigator must be able to adapt to, incorporate, and overcome these dynamics. Here I describe three projects where we address how hippocampal and entorhinal representations do just that. In the first project, I describe how boundaries dynamically anchor entorhinal grid cells and human spatial memory alike when the shape of a familiar environment is changed. In the second project, I describe how the hippocampus maintains a representation of the recent past even in the absence of disambiguating sensory and explicit task demands, a representation which causally depends on intrinsic hippocampal circuitry. In the third project, I describe how the hippocampus preserves a stable representation of context despite ongoing representational changes across a timescale of weeks. Together, these projects highlight the dynamic and adaptive nature of our hippocampal and entorhinal representations, and set the stage for future work building on these techniques and paradigms.
Abstraction and inference in the prefrontal hippocampal circuitry
Abstraction and Inference in the Prefrontal Hippocampal Circuitry
The cellular representations and computations that allow rodents to navigate in space have been described with beautiful precision. In this talk, I will show that some of these same computations can be found in humans doing tasks that appear very different from spatial navigation. I will describe some theory that allows us to think about spatial and non-spatial problems in the same framework, and I will try to use this theory to give a new perspective on the beautiful spatial computations that inspired it. The overall goal of this work is to find a framework where we can talk about complicated non-spatial inference problems with the same precision that is only currently available in space.
Emergent scientists discuss Alzheimer's disease
This seminar is part of our “Emergent Scientists” series, an initiative that provides a platform for scientists at the critical PhD/postdoc transition period to share their work with a broad audience and network. Summary: These talks cover Alzheimer’s disease (AD) research in both mice and humans. Christiana will discuss in particular the translational aspects of applying mouse work to humans and the importance of timing in disease pathology and intervention (e.g. timing between AD biomarkers vs. symptom onset, timing of therapy, etc.). Siddharth will discuss a rare variant of Alzheimer’s disease called “Logopenic Progressive Aphasia”, which presents with temporo-parietal atrophy yet relative sparing of hippocampal circuitry. Siddharth will discuss how, despite the unusual anatomical basis underlying this AD variant, degeneration of the angular gyrus in the left inferior parietal lobule contributes to memory deficits similar to those of typical amnesic Alzheimer’s disease. Christiana’s abstract: Alzheimer’s disease (AD) is a debilitating neurodegenerative disorder that causes severe deterioration of memory, cognition, behavior, and the ability to perform daily activities. The disease is characterized by the accumulation of two proteins in fibrillar form; Amyloid-β forms fibrils that accumulate as extracellular plaques while tau fibrils form intracellular tangles. Here we aim to translate findings from a commonly used AD mouse model to AD patients. Here we initiate and chronically inhibit neuropathology in lateral entorhinal cortex (LEC) layer two neurons in an AD mouse model. This is achieved by over-expressing P301L tau virally and chronically activating hM4Di DREADDs intracranially using the ligand dechloroclozapine. Biomarkers in cerebrospinal fluid (CSF) is measured longitudinally in the model using microdialysis, and we use this same system to intracranially administer drugs aimed at halting AD-related neuropathology. The models are additionally tested in a novel contextual memory task. Preliminary findings indicate that viral injections of P301L tau into LEC layer two reveal direct projections between this region and the outer molecular layer of dentate gyrus and the rest of hippocampus. Additionally, phosphorylated tau co-localize with ‘starter cells’ and appear to spread from the injection site. Preliminary microdialysis results suggest that the concentrations of CSF amyloid-β and tau proteins mirror changes observed along the disease cascade in patients. The disease-modifying drugs appear to halt neuropathological development in this preclincial model. These findings will lead to a novel platform for translational AD research, linking the extensive research done in rodents to clinical applications. Siddharth’s abstract: A distributed brain network supports our ability to remember past events. The parietal cortex is a critical member of this network, yet, its exact contributions to episodic remembering remain unclear. Neurodegenerative syndromes affecting the posterior neocortex offer a unique opportunity to understand the importance and role of parietal regions to episodic memory. In this talk, I introduce and explore the rare neurodegenerative syndrome of Logopenic Progressive Aphasia (LPA), an aphasic variant of Alzheimer’s disease presenting with early, left-lateralized temporo-parietal atrophy, amidst relatively spared hippocampal integrity. I then discuss two key studies from my recent Ph.D. work showcasing pervasive episodic and autobiographical memory dysfunction in LPA, to a level comparable to typical, amnesic Alzheimer’s disease. Using multimodal neuroimaging, I demonstrate how degeneration of the angular gyrus in the left inferior parietal lobule, and its structural connections to the hippocampus, contribute to amnesic profiles in this syndrome. I finally evaluate these findings in the context of memory profiles in other posterior cortical neurodegenerative syndromes as well as recent theoretical models underscoring the importance of the parietal cortex in the integration and representation of episodic contextual information.