← Back

Homeostatic Regulation

Topic spotlight
TopicWorld Wide

homeostatic regulation

Discover seminars, jobs, and research tagged with homeostatic regulation across World Wide.
7 curated items4 Seminars2 ePosters1 Position
Updated 2 days ago
7 items · homeostatic regulation
7 results
Position

Flavia Mancini

Computational and Biological Learning Research Group, Department of Engineering, University of Cambridge
University of Cambridge
Dec 5, 2025

1 Postdoc: Simulating & modelling neural dynamics involved in statistical/aversive learning and homeostatic/pain regulation with the scope to develop new projects. 1 Research Assistant: Conducting behavioral and neuroimaging experiments.

SeminarNeuroscience

Keeping your Brain in Balance: the Ups and Downs of Homeostatic Plasticity (virtual)

Gina Turrigiano, PhD
Professor, Department of Biology, Brandeis University, USA
Feb 16, 2022

Our brains must generate and maintain stable activity patterns over decades of life, despite the dramatic changes in circuit connectivity and function induced by learning and experience-dependent plasticity. How do our brains acheive this balance between opposing need for plasticity and stability? Over the past two decades, we and others have uncovered a family of “homeostatic” negative feedback mechanisms that are theorized to stabilize overall brain activity while allowing specific connections to be reconfigured by experience. Here I discuss recent work in which we demonstrate that individual neocortical neurons in freely behaving animals indeed have a homeostatic activity set-point, to which they return in the face of perturbations. Intriguingly, this firing rate homeostasis is gated by sleep/wake states in a manner that depends on the direction of homeostatic regulation: upward-firing rate homeostasis occurs selectively during periods of active wake, while downward-firing rate homeostasis occurs selectively during periods of sleep, suggesting that an important function of sleep is to temporally segregate bidirectional plasticity. Finally, we show that firing rate homeostasis is compromised in an animal model of autism spectrum disorder. Together our findings suggest that loss of homeostatic plasticity in some neurological disorders may render central circuits unable to compensate for the normal perturbations induced by development and learning.

SeminarNeuroscience

Spreading dynamics and homeostatic regulation in neural networks

Viola Priesemann
Max Planck Institute for Dynamics and Self-Organization, Goettingen, Germany
Apr 25, 2021
ePoster

Homeostatic regulation of synaptic connectivity across connectomes

Andre Ferreira Castro, Ingo Fritz, Feiyu Wang, Ricardo Chirif Molina, Mikołaj Maurycy Miękus, Julijana Gjorgjieva

Bernstein Conference 2024

ePoster

Homeostatic regulation through aggregate synaptic dynamics at multiple timescales

Petros Vlachos, Jochen Triesch

Bernstein Conference 2024