Human Experience
human experience
Neuromodulation of subjective experience
Many psychoactive substances are used with the aim of altering experience, e.g. as analgesics, antidepressants or antipsychotics. These drugs act on specific receptor systems in the brain, including the opioid, serotonergic and dopaminergic systems. In this talk, I will summarise human drug studies targeting opioid receptors and their role for human experience, with focus on the experience of pain, stress, mood, and social connection. Opioids are only indicated for analgesia, due to their potential to cause addiction. When these regulations occurred, other known effects were relegated to side effects. This may be the cause of the prevalent myth that opioids are the most potent painkillers, despite evidence from head-to-head trials, Cochrane reviews and network meta-analyses that opioids are not superior to non-opioid analgesics in the treatment of acute or chronic non-cancer pain. However, due to the variability and diversity of opioid effects across contexts and experiences, some people under some circumstances may indeed benefit from prolonged treatment. I will present data on individual differences in opioid effects due to participant sex and stress induction. Understanding the effects of these commonly used medications on other aspects of the human experience is important to ensure correct use and to prevent unnecessary pain and addiction risk.
Neurobiology of Social Behavior
Social interactions are central to the human experience, yet it is also one of the faculty of the brain that is the most impaired by mental illness. Similarly, social interactions are essential for animals to survive, reproduce, and raise their young. Over the years, my lab has attempted to decipher the unique characteristics of social recognition: what are the unique cues that trigger distinct social behaviors, what is the nature and identity of social behavior circuits, how is the function of these circuits different in males and females and how are they modulated by the animal physiological status? In this lecture, I will describe our recent progress in using genetic, imaging, molecular and behavioral approaches to understand how the brain controls specific social behaviors in both males and females, and how areas throughout the brain participate in the positive and negative controls of specific social interactions. I will also describe how new approaches of single cell transcriptomics have enabled us to uncover specific cell populations involved in distinct social behaviors and the basis of their activity modulation according to the animal state.
The recruitment of spatial cells in large-scale space & an AI approach to neural discovery
Prof Caswell Barry, Professorial Research Fellow, Cell & Developmental Biology, Division of Biosciences, University College London. He and his team are trying to understand how the brain works - how it creates that experience of being human, and more specifically, how the brain creates, stores, and updates memories for places and events. They are trying to answer this is by studying areas of the brain linked to memory, the hippocampus and associated sections of cortex – by recording the activity of neurons in these areas we can visualise and hopefully understand the processes the trigger memory formation and retrieval.