← Back

Human Visual System

Topic spotlight
TopicWorld Wide

human visual system

Discover seminars, jobs, and research tagged with human visual system across World Wide.
6 curated items5 Seminars1 ePoster
Updated over 1 year ago
6 items · human visual system
6 results
SeminarPsychology

Error Consistency between Humans and Machines as a function of presentation duration

Thomas Klein
Eberhard Karls Universität Tübingen
Jun 30, 2024

Within the last decade, Deep Artificial Neural Networks (DNNs) have emerged as powerful computer vision systems that match or exceed human performance on many benchmark tasks such as image classification. But whether current DNNs are suitable computational models of the human visual system remains an open question: While DNNs have proven to be capable of predicting neural activations in primate visual cortex, psychophysical experiments have shown behavioral differences between DNNs and human subjects, as quantified by error consistency. Error consistency is typically measured by briefly presenting natural or corrupted images to human subjects and asking them to perform an n-way classification task under time pressure. But for how long should stimuli ideally be presented to guarantee a fair comparison with DNNs? Here we investigate the influence of presentation time on error consistency, to test the hypothesis that higher-level processing drives behavioral differences. We systematically vary presentation times of backward-masked stimuli from 8.3ms to 266ms and measure human performance and reaction times on natural, lowpass-filtered and noisy images. Our experiment constitutes a fine-grained analysis of human image classification under both image corruptions and time pressure, showing that even drastically time-constrained humans who are exposed to the stimuli for only two frames, i.e. 16.6ms, can still solve our 8-way classification task with success rates way above chance. We also find that human-to-human error consistency is already stable at 16.6ms.

SeminarNeuroscienceRecording

Reorganisation of the human visual system in the absence of light input

Holly Bridge
University of Oxford, UK
Mar 23, 2022
SeminarPsychology

Memory for Latent Representations: An Account of Working Memory that Builds on Visual Knowledge for Efficient and Detailed Visual Representations

Brad Wyble
Penn State University
Jul 6, 2021

Visual knowledge obtained from our lifelong experience of the world plays a critical role in our ability to build short-term memories. We propose a mechanistic explanation of how working memory (WM) representations are built from the latent representations of visual knowledge and can then be reconstructed. The proposed model, Memory for Latent Representations (MLR), features a variational autoencoder with an architecture that corresponds broadly to the human visual system and an activation-based binding pool of neurons that binds items’ attributes to tokenized representations. The simulation results revealed that shape information for stimuli that the model was trained on, can be encoded and retrieved efficiently from latents in higher levels of the visual hierarchy. On the other hand, novel patterns that are completely outside the training set can be stored from a single exposure using only latents from early layers of the visual system. Moreover, the representation of a given stimulus can have multiple codes, representing specific visual features such as shape or color, in addition to categorical information. Finally, we validated our model by testing a series of predictions against behavioral results acquired from WM tasks. The model provides a compelling demonstration of visual knowledge yielding the formation of compact visual representation for efficient memory encoding.

SeminarPsychology

The contribution of the dorsal visual pathway to perception and action

Erez Freud
York University
Apr 28, 2021

The human visual system enables us to recognize objects (e.g., this is a cup) and act upon them (e.g., grasp the cup) with astonishing ease and accuracy. For decades, it was widely accepted that these different functions rely on two separated cortical pathways. The ventral occipitotemporal pathway subserves object recognition, while the dorsal occipitoparietal pathway promotes visually guided actions. In my talk, I will discuss recent evidence from a series of neuropsychological, developmental and neuroimaging studies that were aimed to explore the nature of object representations in the dorsal pathway. The results from these studies highlight the plausible role of the dorsal pathway in object perception and reveal an interplay between shape representations derived by the two pathways. Together, these findings challenge the binary distinction between the two pathways and are consistent with the view that object recognition is not the sole product of ventral pathway computations, but instead relies on a distributed network of regions.

SeminarNeuroscienceRecording

The Dark Side of Vision: Resolving the Neural Code

Petri Ala-Laurila
Aalto University
Apr 5, 2021

All sensory information – like what we see, hear and smell – gets encoded in spike trains by sensory neurons and gets sent to the brain. Due to the complexity of neural circuits and the difficulty of quantifying complex animal behavior, it has been exceedingly hard to resolve how the brain decodes these spike trains to drive behavior. We now measure quantal signals originating from sparse photons through the most sensitive neural circuits of the mammalian retina and correlate the retinal output spike trains with precisely quantified behavioral decisions. We utilize a combination of electrophysiological measurements on the most sensitive ON and OFF retinal ganglion cell types and a novel deep-learning based tracking technology of the head and body positions of freely-moving mice. We show that visually-guided behavior relies on information from the retinal ON pathway for the dimmest light increments and on information from the retinal OFF pathway for the dimmest light decrements (“quantal shadows”). Our results show that the distribution of labor between ON and OFF pathways starts already at starlight supporting distinct pathway-specific visual computations to drive visually-guided behavior. These results have several fundamental consequences for understanding how the brain integrates information across parallel information streams as well as for understanding the limits of sensory signal processing. In my talk, I will discuss some of the most eminent consequences including the extension of this “Quantum Behavior” paradigm from mouse vision to monkey and human visual systems.

ePoster

Toward a comprehensive in vitro model of the human visual system: Three-dimensional assembloids integrating retinal and brain organoids

Ahmad Salti, Ammer-Pickhardt Franziska, Bellapianta Alessandro, Goureau Olivier, Bolz Matthias

FENS Forum 2024