← Back

Image Features

Topic spotlight
TopicWorld Wide

image features

Discover seminars, jobs, and research tagged with image features across World Wide.
3 curated items3 Seminars
Updated over 3 years ago
3 items · image features
3 results
SeminarNeuroscienceRecording

Probabilistic computation in natural vision

Ruben Coen-Cagli
Albert Einstein College of Medicine
Mar 29, 2022

A central goal of vision science is to understand the principles underlying the perception and neural coding of the complex visual environment of our everyday experience. In the visual cortex, foundational work with artificial stimuli, and more recent work combining natural images and deep convolutional neural networks, have revealed much about the tuning of cortical neurons to specific image features. However, a major limitation of this existing work is its focus on single-neuron response strength to isolated images. First, during natural vision, the inputs to cortical neurons are not isolated but rather embedded in a rich spatial and temporal context. Second, the full structure of population activity—including the substantial trial-to-trial variability that is shared among neurons—determines encoded information and, ultimately, perception. In the first part of this talk, I will argue for a normative approach to study encoding of natural images in primary visual cortex (V1), which combines a detailed understanding of the sensory inputs with a theory of how those inputs should be represented. Specifically, we hypothesize that V1 response structure serves to approximate a probabilistic representation optimized to the statistics of natural visual inputs, and that contextual modulation is an integral aspect of achieving this goal. I will present a concrete computational framework that instantiates this hypothesis, and data recorded using multielectrode arrays in macaque V1 to test its predictions. In the second part, I will discuss how we are leveraging this framework to develop deep probabilistic algorithms for natural image and video segmentation.

SeminarNeuroscienceRecording

Aesthetic preference for art can be predicted from a mixture of low- and high-level visual features

John O'Doherty
California Institute of Technology
Nov 11, 2021

It is an open question whether preferences for visual art can be lawfully predicted from the basic constituent elements of a visual image. Here, we developed and tested a computational framework to investigate how aesthetic values are formed. We show that it is possible to explain human preferences for a visual art piece based on a mixture of low- and high-level features of the image. Subjective value ratings could be predicted not only within but also across individuals, using a regression model with a common set of interpretable features. We also show that the features predicting aesthetic preference can emerge hierarchically within a deep convolutional neural network trained only for object recognition. Our findings suggest that human preferences for art can be explained at least in part as a systematic integration over the underlying visual features of an image.

SeminarNeuroscience

Demystifying the richness of visual perception

Ruth Rosenholtz
MIT
Oct 19, 2021

Human vision is full of puzzles. Observers can grasp the essence of a scene in an instant, yet when probed for details they are at a loss. People have trouble finding their keys, yet they may be quite visible once found. How does one explain this combination of marvelous successes with quirky failures? I will describe our attempts to develop a unifying theory that brings a satisfying order to multiple phenomena. One key is to understand peripheral vision. A visual system cannot process everything with full fidelity, and therefore must lose some information. Peripheral vision must condense a mass of information into a succinct representation that nonetheless carries the information needed for vision at a glance. We have proposed that the visual system deals with limited capacity in part by representing its input in terms of a rich set of local image statistics, where the local regions grow — and the representation becomes less precise — with distance from fixation. This scheme trades off computation of sophisticated image features at the expense of spatial localization of those features. What are the implications of such an encoding scheme? Critical to our understanding has been the use of methodologies for visualizing the equivalence classes of the model. These visualizations allow one to quickly see that many of the puzzles of human vision may arise from a single encoding mechanism. They have suggested new experiments and predicted unexpected phenomena. Furthermore, visualization of the equivalence classes has facilitated the generation of testable model predictions, allowing us to study the effects of this relatively low-level encoding on a wide range of higher-level tasks. Peripheral vision helps explain many of the puzzles of vision, but some remain. By examining the phenomena that cannot be explained by peripheral vision, we gain insight into the nature of additional capacity limits in vision. In particular, I will suggest that decision processes face general-purpose limits on the complexity of the tasks they can perform at a given time.