← Back

Imaging Modalities

Topic spotlight
TopicWorld Wide

imaging modalities

Discover seminars, jobs, and research tagged with imaging modalities across World Wide.
4 curated items3 Seminars1 ePoster
Updated about 4 years ago
4 items · imaging modalities
4 results
SeminarNeuroscience

Precision and Temporal Stability of Directionality Inferences from Group Iterative Multiple Model Estimation (GIMME) Brain Network Models

Alexander Weigard
University of Michigan
Mar 29, 2021

The Group Iterative Multiple Model Estimation (GIMME) framework has emerged as a promising method for characterizing connections between brain regions in functional neuroimaging data. Two of the most appealing features of this framework are its ability to estimate the directionality of connections between network nodes and its ability to determine whether those connections apply to everyone in a sample (group-level) or just to one person (individual-level). However, there are outstanding questions about the validity and stability of these estimates, including: 1) how recovery of connection directionality is affected by features of data sets such as scan length and autoregressive effects, which may be strong in some imaging modalities (resting state fMRI, fNIRS) but weaker in others (task fMRI); and 2) whether inferences about directionality at the group and individual levels are stable across time. This talk will provide an overview of the GIMME framework and describe relevant results from a large-scale simulation study that assesses directionality recovery under various conditions and a separate project that investigates the temporal stability of GIMME’s inferences in the Human Connectome Project data set. Analyses from these projects demonstrate that estimates of directionality are most precise when autoregressive and cross-lagged relations in the data are relatively strong, and that inferences about the directionality of group-level connections, specifically, appear to be stable across time. Implications of these findings for the interpretation of directional connectivity estimates in different types of neuroimaging data will be discussed.

SeminarNeuroscience

A machine learning way to analyse white matter tractography streamlines / Application of artificial intelligence in correcting motion artifacts and reducing scan time in MRI

Dr Shenjun Zhong and Dr Kamlesh Pawar
Monash Biomedical Imaging
Mar 10, 2021

1. Embedding is all you need: A machine learning way to analyse white matter tractography streamlines - Dr Shenjun Zhong, Monash Biomedical Imaging Embedding white matter streamlines with various lengths into fixed-length latent vectors enables users to analyse them with general data mining techniques. However, finding a good embedding schema is still a challenging task as the existing methods based on spatial coordinates rely on manually engineered features, and/or labelled dataset. In this webinar, Dr Shenjun Zhong will discuss his novel deep learning model that identifies latent space and solves the problem of streamline clustering without needing labelled data. Dr Zhong is a Research Fellow and Informatics Officer at Monash Biomedical Imaging. His research interests are sequence modelling, reinforcement learning and federated learning in the general medical imaging domain. 2. Application of artificial intelligence in correcting motion artifacts and reducing scan time in MRI - Dr Kamlesh Pawar, Monash Biomedical imaging Magnetic Resonance Imaging (MRI) is a widely used imaging modality in clinics and research. Although MRI is useful it comes with an overhead of longer scan time compared to other medical imaging modalities. The longer scan times also make patients uncomfortable and even subtle movements during the scan may result in severe motion artifact in the images. In this seminar, Dr Kamlesh Pawar will discuss how artificial intelligence techniques can reduce scan time and correct motion artifacts. Dr Pawar is a Research Fellow at Monash Biomedical Imaging. His research interest includes deep learning, MR physics, MR image reconstruction and computer vision.

ePoster

Clinical utility of advanced neuroimaging modalities for epilepsy surgery assessment

Gavin Winston, Andrea Ellsay, Lysa Boissé Lomax, Garima Shukla, Donald Brien, Madeline Hopkins, Ada Mullett, Ron Levy, Karla Batista Garcia-Ramo

FENS Forum 2024