Imperial College
Imperial College
Immune and metabolic regulation of sensorimotor physiology and repair
Neural architectures: what are they good for anyway?
The brain has a highly complex structure in terms of cell types and wiring between different regions. What is it for, if anything? I'll start this talk by asking what might an answer to this question even look like given that we can't run an alternative universe where our brains are structured differently. (Preview: we can do this with models!) I'll then talk about some of our work in two areas: (1) does the modular structure of the brain contribute to specialisation of function? (2) how do different cell types and architectures contribute to multimodal sensory processing?
How do we sleep?
There is no consensus on if sleep is for the brain, body or both. But the difference in how we feel following disrupted sleep or having a good night of continuous sleep is striking. Understanding how and why we sleep will likely give insights into many aspects of health. In this talk I will outline our recent work on how the prefrontal cortex can signal to the hypothalamus to regulate sleep preparatory behaviours and sleep itself, and how other brain regions, including the ventral tegmental area, respond to psychosocial stress to induce beneficial sleep. I will also outline our work on examining the function of the glymphatic system, and whether clearance of molecules from the brain is enhanced during sleep or wakefulness.
Bernstein Student Workshop Series
The Bernstein Student Workshop Series is an initiative of the student members of the Bernstein Network. It provides a unique opportunity to enhance the technical exchange on a peer-to-peer basis. The series is motivated by the idea of bridging the gap between theoretical and experimental neuroscience by bringing together methodological expertise in the network. Unlike conventional workshops, a talented junior scientist will first give a tutorial about a specific theoretical or experimental technique, and then give a talk about their own research to demonstrate how the technique helps to address neuroscience questions. The workshop series is designed to cover a wide range of theoretical and experimental techniques and to elucidate how different techniques can be applied to answer different types of neuroscience questions. Combining the technical tutorial and the research talk, the workshop series aims to promote knowledge sharing in the community and enhance in-depth discussions among students from diverse backgrounds.
Affective Intelligence in Digital Psychiatry: Would Wundt Woo?
Spontaneous Emergence of Computation in Network Cascades
Neuronal network computation and computation by avalanche supporting networks are of interest to the fields of physics, computer science (computation theory as well as statistical or machine learning) and neuroscience. Here we show that computation of complex Boolean functions arises spontaneously in threshold networks as a function of connectivity and antagonism (inhibition), computed by logic automata (motifs) in the form of computational cascades. We explain the emergent inverse relationship between the computational complexity of the motifs and their rank-ordering by function probabilities due to motifs, and its relationship to symmetry in function space. We also show that the optimal fraction of inhibition observed here supports results in computational neuroscience, relating to optimal information processing.
Imperial Neurotechnology 2022 - Annual Research Symposium
A diverse mix of neurotechnology talks and posters from researchers at Imperial and beyond. Visit our event page to find out more. The event is in-person but talk sessions will be broadcast via Teams.
How evidence synthesis can boost in vivo credibility
As part of the BNA's ongoing Credibility in Neuroscience work, this series of three short webinars will provide neuroscience researchers working in an in vivo setting with tips on how to improve the credibility of their work. Each webinar will be hosted by Emily Sena, member of the BNA's Credibility Advisory Board, with the opportunity for questions.
Advancing Brain-Computer Interfaces by adopting a neural population approach
Brain-computer interfaces (BCIs) have afforded paralysed users “mental control” of computer cursors and robots, and even of electrical stimulators that reanimate their own limbs. Most existing BCIs map the activity of hundreds of motor cortical neurons recorded with implanted electrodes into control signals to drive these devices. Despite these impressive advances, the field is facing a number of challenges that need to be overcome in order for BCIs to become widely used during daily living. In this talk, I will focus on two such challenges: 1) having BCIs that allow performing a broad range of actions; and 2) having BCIs whose performance is robust over long time periods. I will present recent studies from our group in which we apply neuroscientific findings to address both issues. This research is based on an emerging view about how the brain works. Our proposal is that brain function is not based on the independent modulation of the activity of single neurons, but rather on specific population-wide activity patters —which mathematically define a “neural manifold”. I will provide evidence in favour of such a neural manifold view of brain function, and illustrate how advances in systems neuroscience may be critical for the clinical success of BCIs.
The wonders and complexities of brain microstructure: Enabling biomedical engineering studies combining imaging and models
Brain microstructure plays a key role in driving the transport of drug molecules directly administered to the brain tissue as in Convection-Enhanced Delivery procedures. This study reports the first systematic attempt to characterize the cytoarchitecture of commissural, long association and projection fiber, namely: the corpus callosum, the fornix and the corona radiata. Ovine samples from three different subjects have been imaged using scanning electron microscope combined with focused ion beam milling. Particular focus has been given to the axons. For each tract, a 3D reconstruction of relatively large volumes (including a significant number of axons) has been performed. Namely, outer axonal ellipticity, outer axonal cross-sectional area and its relative perimeter have been measured. This study [1] provides useful insight into the fibrous organization of the tissue that can be described as composite material presenting elliptical tortuous tubular fibers, leading to a workflow to enable accurate simulations of drug delivery which include well-resolved microstructural features. As a demonstration of the use of these imaging and reconstruction techniques, our research analyses the hydraulic permeability of two white matter (WM) areas (corpus callosum and fornix) whose three-dimensional microstructure was reconstructed starting from the acquisition of the electron microscopy images. Considering that the white matter structure is mainly composed of elongated and parallel axons we computed the permeability along the parallel and perpendicular directions using computational fluid dynamics [2]. The results show a statistically significant difference between parallel and perpendicular permeability, with a ratio about 2 in both the white matter structures analysed, thus demonstrating their anisotropic behaviour. This is in line with the experimental results obtained using perfusion of brain matter [3]. Moreover, we find a significant difference between permeability in corpus callosum and fornix, which suggests that also the white matter heterogeneity should be considered when modelling drug transport in the brain. Our findings, that demonstrate and quantify the anisotropic and heterogeneous character of the white matter, represent a fundamental contribution not only for drug delivery modelling but also for shedding light on the interstitial transport mechanisms in the extracellular space. These and many other discoveries will be discussed during the talk." "1. https://www.researchsquare.com/article/rs-686577/v1, 2. https://www.pnas.org/content/118/36/e2105328118, 3. https://ieeexplore.ieee.org/abstract/document/9198110
Understanding the role of neural heterogeneity in learning
The brain has a hugely diverse and heterogeneous nature. The exact role of heterogeneity has been relatively little explored as most neural models tend to be largely homogeneous. We trained spiking neural networks with varying degrees of heterogeneity on complex real-world tasks and found that heterogeneity resulted in more stable and robust training and improved training performance, especially for tasks with a higher temporal structure. Moreover, the optimal distribution of parameters found by training was found to be similar to experimental observations. These findings suggest that heterogeneity is not simply a result of noisy biological processes, but it may play a crucial role for learning in complex, changing environments.
Improving Communication With the Brain Through Electrode Technologies
Over the past 30 years bionic devices such as cochlear implants and pacemakers, have used a small number of metal electrodes to restore function and monitor activity in patients following disease or injury of excitable tissues. Growing interest in neurotechnologies, facilitated by ventures such as BrainGate, Neuralink and the European Human Brain Project, has increased public awareness of electrotherapeutics and led to both new applications for bioelectronics and a growing demand for less invasive devices with improved performance. Coupled with the rapid miniaturisation of electronic chips, bionic devices are now being developed to diagnose and treat a wide variety of neural and muscular disorders. Of particular interest is the area of high resolution devices that require smaller, more densely packed electrodes. Due to poor integration and communication with body tissue, conventional metallic electrodes cannot meet these size and spatial requirements. We have developed a range of polymer based electronic materials including conductive hydrogels (CHs), conductive elastomers (CEs) and living electrodes (LEs). These technologies provide synergy between low impedance charge transfer, reduced stiffness and an ability to be provide a biologically active interface. A range of electrode approaches are presented spanning wearables, implantables and drug delivery devices. This talk outlines the materials development and characterisation of both in vitro properties and translational in vivo performance. The challenges for translation and commercial uptake of novel technologies will also be discussed.
Measuring relevant features of the social and physical environment with imagery
The efficacy of images to create quantitative measures of urban perception has been explored in psychology, social science, urban planning and architecture over the last 50 years. The ability to scale these measurements has become possible only in the last decade, due to increased urban surveillance in the form of street view and satellite imagery, and the accessibility of such data. This talk will present a series of projects which make use of imagery and CNNs to predict, measure and interpret the social and physical environments of our cities.
Learning the structure and investigating the geometry of complex networks
Networks are widely used as mathematical models of complex systems across many scientific disciplines, and in particular within neuroscience. In this talk, we introduce two aspects of our collaborative research: (1) machine learning and networks, and (2) graph dimensionality. Machine learning and networks. Decades of work have produced a vast corpus of research characterising the topological, combinatorial, statistical and spectral properties of graphs. Each graph property can be thought of as a feature that captures important (and sometimes overlapping) characteristics of a network. We have developed hcga, a framework for highly comparative analysis of graph data sets that computes several thousands of graph features from any given network. Taking inspiration from hctsa, hcga offers a suite of statistical learning and data analysis tools for automated identification and selection of important and interpretable features underpinning the characterisation of graph data sets. We show that hcga outperforms other methodologies (including deep learning) on supervised classification tasks on benchmark data sets whilst retaining the interpretability of network features, which we exemplify on a dataset of neuronal morphologies images. Graph dimensionality. Dimension is a fundamental property of objects and the space in which they are embedded. Yet ideal notions of dimension, as in Euclidean spaces, do not always translate to physical spaces, which can be constrained by boundaries and distorted by inhomogeneities, or to intrinsically discrete systems such as networks. Deviating from approaches based on fractals, here, we present a new framework to define intrinsic notions of dimension on networks, the relative, local and global dimension. We showcase our method on various physical systems.
Physically Structured Neural Networks for Smooth and Contact Dynamics
Coordinated motion of active filaments on spherical surfaces
Filaments (slender, microscopic elastic bodies) are prevalent in biological and industrial settings. In the biological case, the filaments are often active, in that they are driven internally by motor proteins, with the prime examples being cilia and flagella. For cilia in particular, which can appear in dense arrays, their resulting motions are coupled through the surrounding fluid, as well as through surfaces to which they are attached. In this talk, I present numerical simulations exploring the coordinated motion of active filaments and how it depends on the driving force, density of filaments, as well as the attached surface. In particular, we find that when the surface is spherical, its topology introduces local defects in coordinated motion which can then feedback and alter the global state. This is particularly true when the surface is not held fixed and is free to move in the surrounding fluid. These simulations take advantage of a computational framework we developed for fully 3D filament motion that combines unit quaternions, implicit geometric time integration, quasi-Newton methods, and fast, matrix-free methods for hydrodynamic interactions and it will also be presented.
Imperial Neurotechnology 2021 - Annual Research Symposium
A diverse mix of neurotechnology talks from academic and industry colleagues plus presentations from our MRes Neurotechnology students. Visit our event page to find out more and register now!
The 2021 Annual Bioengineering Lecture + Bioinspired Guidance, Navigation and Control Symposium
Join the Department of Bioengineering on the 26th May at 9:00am for The 2021 Annual Bioengineering Lecture + Bioinspired Guidance, Navigation and Control Symposium. This year’s lecture speaker will be distinguished bioengineer and neuroscientist Professor Mandyam V. Srinivasan AM FRS, from the University of Queensland. Professor Srinivasan studies visual systems, particularly those of bees and birds. His research has revealed how flying insects negotiate narrow gaps, regulate the height and speed of flight, estimate distance flown, and orchestrate smooth landings. Apart from enhancing fundamental knowledge, these findings are leading to novel, biologically inspired approaches to the design of guidance systems for unmanned aerial vehicles with applications in the areas of surveillance, security and planetary exploration. Following Professor Srinivasan’s lecture will be the Bioinspired GNC Mini Symposium with guest speakers from Google Deepmind, Imperial College London, the University of Würzburg and the University of Konstanz giving talks on their research into autonomous robot navigation, neural mechanisms of compass orientation in insects and computational approaches to motor control.
In-Love with Addiction Neuroscience
In this talk series, addiction neuroscientists from across the world share their personal stories/experiences on the beauty of addiction neuroscience and how/why they have decided to invest their scientific life in this field. We hope that this talk series would encourage and support a new generation of young and passionate addiction neuroscientists in different countries to revolutionize the field of addiction medicine.
Coordinated hippocampal-thalamic-cortical communication crucial for engram dynamics underneath systems consolidation
How to combine brain stimulation with neuroimaging: "Concurrent tES-fMRI
Transcranial electrical stimulation (tES) techniques, including transcranial alternating and direct current stimulation (tACS and tDCS), are non-invasive brain stimulation technologies increasingly used for modulation of targeted neural and cognitive processes. Integration of tES with human functional magnetic resonance imaging (fMRI) provides a novel avenue in human brain mapping for investigating the neural mechanisms underlying tES. Advances in the field of tES-fMRI can be hampered by the methodological variability between studies that confounds comparability/replicability. To address the technical/methodological details and to propose a new framework for future research, the scientific international network of tES-fMRI (INTF) was founded with two main aims: • To foster scientific exchange between researchers for sharing ideas, exchanging experiences, and publishing consensus articles; • To implement the joint studies through a continuing dialogue with the institutes across the globe. The network organized three international scientific webinars, in which considerable heterogeneities of technical/methodological aspects in studies combining tES with fMRI were discussed along with strategies to help to bridge respective knowledge gaps, and distributes newsletters that are sent regularly to the network members from the Twitter and LinkedIn accounts.
Neural heterogeneity promotes robust learning
The brain has a hugely diverse, heterogeneous structure. By contrast, many functional neural models are homogeneous. We compared the performance of spiking neural networks trained to carry out difficult tasks, with varying degrees of heterogeneity. Introducing heterogeneity in membrane and synapse time constants substantially improved task performance, and made learning more stable and robust across multiple training methods, particularly for tasks with a rich temporal structure. In addition, the distribution of time constants in the trained networks closely matches those observed experimentally. We suggest that the heterogeneity observed in the brain may be more than just the byproduct of noisy processes, but rather may serve an active and important role in allowing animals to learn in changing environments.
Targeting the synapse in Alzheimer’s Disease
Alzheimer’s Disease is characterised by the accumulation of misfolded proteins, namely amyloid and tau, however it is synapse loss which leads to the cognitive impairments associated with the disease. Many studies have focussed on single time points to determine the effects of pathology on synapses however this does not inform on the plasticity of the synapses, that is how they behave in vivo as the pathology progresses. Here we used in vivo two-photon microscopy to assess the temporal dynamics of axonal boutons and dendritic spines in mouse models of tauopathy[1] (rTg4510) and amyloidopathy[2] (J20). This revealed that pre- and post-synaptic components are differentially affected in both AD models in response to pathology. In the Tg4510 model, differences in the stability and turnover of axonal boutons and dendritic spines immediately prior to neurite degeneration was revealed. Moreover, the dystrophic neurites could be partially rescued by transgene suppression. Understanding the imbalance in the response of pre- and post-synaptic components is crucial for drug discovery studies targeting the synapse in Alzheimer’s Disease. To investigate how sub-types of synapses are affected in human tissue, the Multi-‘omics Atlas Project, a UKDRI initiative to comprehensively map the pathology in human AD, will determine the synaptome changes using imaging and synaptic proteomics in human post mortem AD tissue. The use of multiple brain regions and multiple stages of disease will enable a pseudotemporal profile of pathology and the associated synapse alterations to be determined. These data will be compared to data from preclinical models to determine the functional implications of the human findings, to better inform preclinical drug discovery studies and to develop a therapeutic strategy to target synapses in Alzheimer’s Disease[3].
Brains as human-in-the-loop AI systems
Leveraging neural manifolds to advance brain-computer interfaces
Brain-computer interfaces (BCIs) have afforded paralysed users “mental control” of computer cursors and robots, and even of electrical stimulators that reanimate their own limbs. Most existing BCIs map the activity of hundreds of motor cortical neurons recorded with implanted electrodes into control signals to drive these devices. Despite these impressive advances, the field is facing a number of challenges that need to be overcome in order for BCIs to become widely used during daily living. In this talk, I will focus on two such challenges: 1) having BCIs that allow performing a broad range of actions; and 2) having BCIs whose performance is robust over long time periods. I will present recent studies from our group in which we apply neuroscientific findings to address both issues. This research is based on an emerging view about how the brain works. Our proposal is that brain function is not based on the independent modulation of the activity of single neurons, but rather on specific population-wide activity patters —which mathematically define a “neural manifold”. I will provide evidence in favour of such a neural manifold view of brain function, and illustrate how advances in systems neuroscience may be critical for the clinical success of BCIs.
Continuum modelling of active fluids beyond the generalised Taylor dispersion
The Smoluchowski equation has often been used as the starting point of many continuum models of active suspensions. However, its six-dimensional nature depending on time, space and orientation requires a huge computational cost, fundamentally limiting its use for large-scale problems, such as mixing and transport of active fluids in turbulent flows. Despite the singular nature in strain-dominant flows, the generalised Taylor dispersion (GTD) theory (Frankel & Brenner 1991, J. Fluid Mech. 230:147-181) has been understood to be one of the most promising ways to reduce the Smoluchowski equation into an advection-diffusion equation, the mean drift and diffusion tensor of which rely on ‘local’ flow information only. In this talk, we will introduce an exact transformation of the Smoluchowski equation into such an advection-diffusion equation requiring only local flow information. Based on this transformation, a new advection-diffusion equation will subsequently be proposed by taking an asymptotic analysis in the limit of small particle velocity. With several examples, it will be demonstrated that the new advection-diffusion model, non-singular in strain-dominant flows, outperforms the GTD theory.
Geometric deep learning on graphs and manifolds
Sex, guts and babies: the plasticity of the adult intestine and its neurons
Internal organs constantly exchange signals, and can respond with striking anatomical and functional transformations, even in fully developed organisms. We are exploring the mechanisms that drive and sustain such plasticity using the intestine and its neurons as experimental systems. I will present some of our recent work, which has characterised the enteric nervous system of Drosophila, and has explored its physiological plasticity as well as that of the intestine itself. This work has uncovered unexpected sexual dimorphisms, intestinal contributions to reproductive success and metabolic crosstalk between the gut and the brain. Interestingly, this crosstalk appears to be spatially constrained by the three dimensional arrangement of viscera, revealing a previously unrecognised layer of inter-organ signalling regulation. I may also describe our attempts to explore how broadly applicable our findings may be using mammalian systems.
Workshop on "Spiking neural networks as universal function approximators: Learning algorithms and applications
This is a two-day workshop. Sign up and see titles and abstracts on website.