← Back

Insect Brain

Topic spotlight
TopicWorld Wide

insect brain

Discover seminars, jobs, and research tagged with insect brain across World Wide.
7 curated items7 Seminars
Updated over 2 years ago
7 items · insect brain
7 results
SeminarNeuroscienceRecording

NMC4 Short Talk: The complete connectome of an insect brain

Michael Winding (he/him)
University of Cambridge
Dec 1, 2021

Brains must integrate complex sensory information and compare to past events to generate appropriate behavioral responses. The neural circuit basis of these computations is unclear and the underlying structure unknown. Here, we mapped the comprehensive synaptic wiring diagram of the fruit fly larva brain, which contains 3,013 neurons and 544K synaptic sites. It is the most complete insect connectome to date: 1) Both brain hemispheres are reconstructed, allowing investigation of neural pathways that include contralateral axons, which we found in 37% of brain neurons. 2) All sensory neurons and descending neurons are reconstructed, allowing one to follow signals in an uninterrupted chain—from the sensory periphery, through the brain, to motor neurons in the nerve cord. We developed novel computational tools, allowing us to cluster the brain and investigate how information flows through it. We discovered that feedforward pathways from sensory to descending neurons are multilayered and highly multimodal. Robust feedback was observed at almost all levels of the brain, including descending neurons. We investigated how the brain hemispheres communicate with each other and the nerve cord, leading to identification of novel circuit motifs. This work provides the complete blueprint of a brain and a strong foundation to study the structure-function relationship of neural circuits.

SeminarNeuroscienceRecording

NMC4 Short Talk: Maggot brain, mirror image? A statistical analysis of bilateral symmetry in an insect brain connectome

Benjamin Pedigo (he/him)
Johns Hopkins University
Nov 30, 2021

Neuroscientists have many questions about connectomes that revolve around the ability to compare networks. For example, comparing connectomes could help explain how neural wiring is related to individual differences, genetics, disease, development, or learning. One such question is that of bilateral symmetry: are the left and right sides of a connectome the same? Here, we investigate the bilateral symmetry of a recently presented connectome of an insect brain, the Drosophila larva. We approach this question from the perspective of two-sample testing for networks. First, we show how this question of “sameness” can be framed as a variety of different statistical hypotheses, each with different assumptions. Then, we describe test procedures for each of these hypotheses. We show how these different test procedures perform on both the observed connectome as well as a suite of synthetic perturbations to the connectome. We also point out that these tests require careful attention to parameter alignment and differences in network density in order to provide biologically meaningful results. Taken together, these results provide the first statistical characterization of bilateral symmetry for an entire brain at the single-neuron level, while also giving practical recommendations for future comparisons of connectome networks.

SeminarNeuroscienceRecording

Target detection in the natural world

Karin Nordstrom
Flinders University
Nov 14, 2021

Animal sensory systems are optimally adapted to those features typically encountered in natural surrounds, thus allowing neurons that have a limited bandwidth to encode almost impossibly large input ranges. Importantly, natural scenes are not random, and peripheral visual systems have therefore evolved to reduce the predictable redundancy. The vertebrate visual cortex is also optimally tuned to the spatial statistics of natural scenes, but much less is known about how the insect brain responds to these. We are redressing this deficiency using several techniques. Olga Dyakova uses exquisite image manipulation to give natural images unnatural image statistics, or vice versa. Marissa Holden then uses these images as stimuli in electrophysiological recordings of neurons in the fly optic lobes, to see how the brain codes for the statistics typically encountered in natural scenes, and Olga Dyakova measures the behavioral optomotor response on our trackball set-up.

SeminarNeuroscienceRecording

Communicating (Neuro)Science

Anna Stoeckl
Würzburg University
Jul 7, 2021

In recent years, communicating one’s research to audiences outside of academia has grown in importance and time commitment for many researchers. Science Slams or University Open Days reliably draw large crowds, and the potential of social media to amplify any message has made it possible to reach interested recipients without the traditional press as a middleman. In this presentation, I will provide insights into science communication from my perspective as a neuroscience researcher, who enjoys spreading the word about how amazing insect brains are. We will have a look at the What?, Why? and How? of science communication. What do we generally mean by the term, and what forms can it take? Why should – or must – we engage in it? And how can we best achieve our aims with it? I will provide an overview of the current communication landscape, some food for (critical) thought, and many practical tips that help me when preparing to share my science with a wider audience.

SeminarNeuroscience

Neural mechanisms of navigation behavior

Rachel Wilson
Joseph B. Martin Professor of Basic Research in the Field of Neurobiology, Harvard Medical School. Investigator, Howard Hughes Medical Institute.
May 25, 2021

The regions of the insect brain devoted to spatial navigation are beautifully orderly, with a remarkably precise pattern of synaptic connections. Thus, we can learn much about the neural mechanisms of spatial navigation by targeting identifiable neurons in these networks for in vivo patch clamp recording and calcium imaging. Our lab has recently discovered that the "compass system" in the Drosophila brain is anchored to not only visual landmarks, but also the prevailing wind direction. Moreover, we found that the compass system can re-learn the relationship between these external sensory cues and internal self-motion cues, via rapid associative synaptic plasticity. Postsynaptic to compass neurons, we found neurons that conjunctively encode heading direction and body-centric translational velocity. We then showed how this representation of travel velocity is transformed from body- to world-centric coordinates at the subsequent layer of the network, two synapses downstream from compass neurons. By integrating this world-centric vector-velocity representation over time, it should be possible for the brain to form a stored representation of the body's path through the environment.