Integrate and Fire
Integrate And Fire
NMC4 Short Talk: An optogenetic theory of stimulation near criticality
Recent advances in optogenetics allow for stimulation of neurons with sub-millisecond spike jitter and single neuron selectivity. Already this precision has revealed new levels of cortical sensitivity: stimulating tens of neurons can yield changes in the mean firing rate of thousands of similarly tuned neurons. This extreme sensitivity suggests that cortical dynamics are near criticality. Criticality is often studied in neural systems as a non-equilibrium thermodynamic process in which scale-free patterns of activity, called avalanches, emerge between distinct states of spontaneous activity. While criticality is well studied, it is still unclear what these distinct states of spontaneous activity are and what responses we expect from stimulation of this activity. By answering these questions, optogenetic stimulation will become a new avenue for approaching criticality and understanding cortical dynamics. Here, for the first time, we study the effects of optogenetic-like stimulation on a model near criticality. We study a model of Inhibitory/Excitatory (I/E) Leaky Integrate and Fire (LIF) spiking neurons which display a region of high sensitivity as seen in experiments. We find that this region of sensitivity is, indeed, near criticality. We derive the Dynamic Mean Field Theory of this model and find that the distinct states of activity are asynchrony and synchrony. We use our theory to characterize response to various types and strengths of optogenetic stimulation. Our model and theory predict that asynchronous, near-critical dynamics can have two qualitatively different responses to stimulation: one characterized by high sensitivity, discrete event responses, and high trial-to-trial variability, and another characterized by low sensitivity, continuous responses with characteristic frequencies, and low trial-to-trial variability. While both response types may be considered near-critical in model space, networks which are closest to criticality show a hybrid of these response effects.
Conductance Based Integrate and Fire Model with Correlated Inputs Captures Neural Variability
COSYNE 2023