← Back

Learning and Memory

Topic spotlight
TopicWorld Wide

learning and memory

Discover seminars, jobs, and research tagged with learning and memory across World Wide.
42 curated items26 Seminars8 Positions8 ePosters
Updated in 2 months
42 items · learning and memory
42 results
SeminarNeuroscience

Decoding stress vulnerability

Stamatina Tzanoulinou
University of Lausanne, Faculty of Biology and Medicine, Department of Biomedical Sciences
Feb 19, 2026

Although stress can be considered as an ongoing process that helps an organism to cope with present and future challenges, when it is too intense or uncontrollable, it can lead to adverse consequences for physical and mental health. Social stress specifically, is a highly prevalent traumatic experience, present in multiple contexts, such as war, bullying and interpersonal violence, and it has been linked with increased risk for major depression and anxiety disorders. Nevertheless, not all individuals exposed to strong stressful events develop psychopathology, with the mechanisms of resilience and vulnerability being still under investigation. During this talk, I will identify key gaps in our knowledge about stress vulnerability and I will present our recent data from our contextual fear learning protocol based on social defeat stress in mice.

PositionNeuroscience

Dr. Carmen Varela

Florida State University
Tallahassee, Florida
Dec 5, 2025

The Varela lab is expanding, and we are excited to announce a new postdoctoral position to grow our current team in the Psychology Department at Florida State University (https://varelalab.create.fsu.edu/). Start date flexible within 2024. 1-2 years with possibility of extension. About us: The Varela Laboratory is dedicated to understanding the neural underpinnings of learning and memory in rodents, with a strong focus on investigating the role of the thalamus in sleep-dependent memory consolidation. We employ a wide array of cutting-edge neuroscience techniques, including electrode recordings in freely behaving rodents, closed-loop brain activity manipulations, optogenetics, and computational approaches. *** What you get *** • Work on exciting and impactful projects aimed at understanding the role of higher-order thalamic circuits in learning and memory. • Develop research skills utilizing state-of-the-art techniques in systems, behavioral and computational neuroscience. • Receive mentorship within a supportive lab environment situated in a large, multidisciplinary department spanning work in neuroscience and psychology (https://psychology.fsu.edu/).

Position

Prof Carmen Varela

Florida Atlantic University
Jupiter, FL. United States
Dec 5, 2025

We are opening two positions (one postdoc and one research assistant/post-bac) in the laboratory of Dr. Carmen Varela (Psychology Department, Florida Atlantic University) to investigate the spike dynamics and synaptic changes in thalamic cells contributing to sleep-dependent memory consolidation.

Position

Dr. Carmen Varela

Florida Atlantic University
Jupiter, Florida
Dec 5, 2025

One Research Assistant or Master’s Student position in the laboratory of Dr. Carmen Varela (Psychology Department, Florida Atlantic University; https://www.varelalab.org/) to investigate biomarkers of sleep cellular activity in the thalamus that correlate with sleep depth and stability. Start date January 2022 (some flexibility). *** What you get *** · Work on exciting and impactful projects to understand the contribution of thalamic cells to sleep and memory. · Develop research skills using state-of-the-art systems and pharmacology techniques in rodents. · Mentorship, supportive lab environment, in a rapidly growing neuroscience campus. Location: The Varela laboratory is located in FAU’s Jupiter campus, a rapidly growing neuroscience hub, which also hosts our partners the Max Planck Florida Institute for Neuroscience and Scripps Research Institute. FAU is an equal opportunity/affirmative action institution and all qualified applicants will receive consideration for employment without regard to race, color, religion, sex, sexual orientation, gender identity, national origin, disability status, protected veterans’ status or any other characteristic protected by law.

Position

Cian O’Donnell

Ulster University, Intelligent Systems Research Centre, CNET team
Derry campus of Ulster University, Northern Ireland, UK
Dec 5, 2025

We are looking for a computational neuroscience PhD student for a project on “NeuroAI approaches to understanding inter-individual differences in cognition and psychiatric disorders.” The goal is to use populations of deep neural networks as a simple model for populations of human brains, combined with models from evolutionary genetics, to understand the principles underlying the mapping from genotypes to cognitive phenotypes.

Position

N/A

Florida State University; Department of Psychology; Program in Neuroscience
Florida State University
Dec 5, 2025

The Department of Psychology at Florida State University (FSU) invites applicants for a full-time tenure-track Assistant Professor position in BEHAVIORAL/SYSTEMS NEUROSCIENCE. Candidates with lines of laboratory animal research in any area of Neuroscience are encouraged to apply, particularly those who work to understand experience-dependent neural activity in the normal or diseased brain. Such research might include spatial navigation, decision making, and/or learning and memory. FSU is classified as a Carnegie R1 (Highest Research Activities) and ranks in the top 20 of National Public Universities (US News & World Reports). Candidates will find an outstanding research infrastructure with scientific colleagues housed in adjacent buildings, and relatively new laboratory space and vivarium. The department has a fully-staffed electronics and machine shop and faculty have access to core equipment and resources including surgical suites, a confocal microscope and common-use histology/molecular laboratory in the building and numerous other shared resources across the program facilities (see https://www.neuro.fsu.edu/rsrc/cores) and campus (e.g., 21T small animal magnet). Our department has outstanding resources, a favorable teaching load, a high level of research activity, and a collegial atmosphere. The neuroscience community across the state of Florida is also highly collaborative. More information about our department and the Program in Neuroscience can be found at www.psy.fsu.edu and www.neuro.fsu.edu. The University is in Tallahassee, the capital of Florida, where residents have access to a broad range of cultural amenities and an abundance of regional springs, lakes and rivers, and pristine beaches on the Gulf of Mexico. Faculty will be expected to maintain a strong research program, train graduate students in the Interdisciplinary Program in Neuroscience, and have the potential for excellent teaching and mentoring of diverse student populations for undergraduate and graduate neuroscience courses in the Psychology Department. A doctoral degree is required. Applicants with a demonstrated commitment to expanding access to neuroscience through their program of research are encouraged to apply. To apply, go to http://www.jobs.fsu.edu (Job ID 58629) and submit: (1) a cover letter, (2) a curriculum vitae, (3) a research statement, (4) a teaching statement, and (5) up to four peer-reviewed papers, and (6) the names and contact information for writers for 3 letters of recommendation. Application review will begin on October 30, 2024. FSU is an Equal Opportunity/Access/Affirmative Action/Pro Disabled & Veteran Employer committed to enhancing the diversity of its faculty and students. Statement can be accessed at: https://hr.fsu.edu/sites/g/files/upcbnu2186/files/PDF/Publications/diversity/EEO_Statement.pdf. Inquiries about the position may be directed to Aaron Wilber, Search Chair, at awilber@fsu.edu.

Position

N/A

Florida State University; Department of Psychology; Program in Neuroscience
Florida State University
Dec 5, 2025

The Department of Psychology at Florida State University (FSU) invites applicants for a full-time tenure-track Assistant Professor position in BEHAVIORAL/SYSTEMS NEUROSCIENCE. Candidates with lines of laboratory animal research in any area of Neuroscience are encouraged to apply, particularly those who work to understand experience-dependent neural activity in the normal or diseased brain. Such research might include spatial navigation, decision making, and/or learning and memory. FSU is classified as a Carnegie R1 (Highest Research Activities) and ranks in the top 20 of National Public Universities (US News & World Reports). Candidates will find an outstanding research infrastructure with scientific colleagues housed in adjacent buildings, and relatively new laboratory space and vivarium. The department has a fully-staffed electronics and machine shop and faculty have access to core equipment and resources including surgical suites, a confocal microscope and common-use histology/molecular laboratory in the building and numerous other shared resources across the program facilities (see https://www.neuro.fsu.edu/rsrc/cores) and campus (e.g., 21T small animal magnet). Our department has outstanding resources, a favorable teaching load, a high level of research activity, and a collegial atmosphere. The neuroscience community across the state of Florida is also highly collaborative. More information about our department and the Program in Neuroscience can be found at www.psy.fsu.edu and www.neuro.fsu.edu. The University is in Tallahassee, the capital of Florida, where residents have access to a broad range of cultural amenities and an abundance of regional springs, lakes and rivers, and pristine beaches on the Gulf of Mexico. Faculty will be expected to maintain a strong research program, train graduate students in the Interdisciplinary Program in Neuroscience, and have the potential for excellent teaching and mentoring of diverse student populations for undergraduate and graduate neuroscience courses in the Psychology Department. A doctoral degree is required. Applicants with a demonstrated commitment to expanding access to neuroscience through their program of research are encouraged to apply. To apply, go to http://www.jobs.fsu.edu (Job ID 58629) and submit: (1) a cover letter, (2) a curriculum vitae, (3) a research statement, (4) a teaching statement, and (5) up to four peer-reviewed papers, and (6) the names and contact information for writers for 3 letters of recommendation. Application review will begin on October 30, 2024. FSU is an Equal Opportunity/Access/Affirmative Action/Pro Disabled & Veteran Employer committed to enhancing the diversity of its faculty and students. Statement can be accessed at: https://hr.fsu.edu/sites/g/files/upcbnu2186/files/PDF/Publications/diversity/EEO_Statement.pdf. Inquiries about the position may be directed to Aaron Wilber, Search Chair, at awilber@fsu.edu.

Position

Florida State University

Florida State University
Tallahassee, Florida. USA
Dec 5, 2025

The Department of Psychology at Florida State University (FSU) invites applicants for a full-time tenure-track Assistant Professor position in BEHAVIORAL/SYSTEMS NEUROSCIENCE. Candidates with lines of laboratory animal research in any area of Neuroscience are encouraged to apply, particularly those who work to understand experience-dependent neural activity in the normal or diseased brain. Such research might include spatial navigation, decision making, and/or learning and memory. FSU is classified as a Carnegie R1 (Highest Research Activities) and ranks in the top 20 of National Public Universities (US News & World Reports). Candidates will find an outstanding research infrastructure with scientific colleagues housed in adjacent buildings, and relatively new laboratory space and vivarium. The department has a fully-staffed electronics and machine shop and faculty have access to core equipment and resources including surgical suites, a confocal microscope and common-use histology/molecular laboratory in the building and numerous other shared resources across the program facilities (see https://www.neuro.fsu.edu/rsrc/cores) and campus (e.g., 21T small animal magnet). Our department has outstanding resources, a favorable teaching load, a high level of research activity, and a collegial atmosphere. The neuroscience community across the state of Florida is also highly collaborative. More information about our department and the Program in Neuroscience can be found at www.psy.fsu.edu and www.neuro.fsu.edu. The University is in Tallahassee, the capital of Florida, where residents have access to a broad range of cultural amenities and an abundance of regional springs, lakes and rivers, and pristine beaches on the Gulf of Mexico.

Position

Coraline Rinn Iordan

University of Rochester
Rochester, NY
Dec 5, 2025

The University of Rochester’s Department of Brain and Cognitive Sciences seeks to hire an outstanding early-career candidate in the area of Human Cognition. Areas of study may center on any aspect of higher-level cognitive processes such as decision-making, learning and memory, concepts, language and communication, development, reasoning, metacognition, and collective cognition. We particularly welcome applications from candidates researching cognition in human subjects through behavioral, computational or neuroimaging methods. Successful candidates will develop a research program that establishes new collaborations within the department and across the university, and will also be part of a university-wide community engaged in graduate and undergraduate education.

SeminarNeuroscience

Learning and Memory

Nicolas Brunel, Ashok Litwin-Kumar, Julijana Gjeorgieva
Duke University; Columbia University; Technical University Munich
Nov 28, 2024

This webinar on learning and memory features three experts—Nicolas Brunel, Ashok Litwin-Kumar, and Julijana Gjorgieva—who present theoretical and computational approaches to understanding how neural circuits acquire and store information across different scales. Brunel discusses calcium-based plasticity and how standard “Hebbian-like” plasticity rules inferred from in vitro or in vivo datasets constrain synaptic dynamics, aligning with classical observations (e.g., STDP) and explaining how synaptic connectivity shapes memory. Litwin-Kumar explores insights from the fruit fly connectome, emphasizing how the mushroom body—a key site for associative learning—implements a high-dimensional, random representation of sensory features. Convergent dopaminergic inputs gate plasticity, reflecting a high-dimensional “critic” that refines behavior. Feedback loops within the mushroom body further reveal sophisticated interactions between learning signals and action selection. Gjorgieva examines how activity-dependent plasticity rules shape circuitry from the subcellular (e.g., synaptic clustering on dendrites) to the cortical network level. She demonstrates how spontaneous activity during development, Hebbian competition, and inhibitory-excitatory balance collectively establish connectivity motifs responsible for key computations such as response normalization.

SeminarNeuroscience

Physical Activity, Sedentary Behaviour and Brain Health

Kelly Aine
Trinity College Dublin, The University of Dublin
Sep 19, 2024
SeminarPsychology

The contribution of mental face representations to individual face processing abilities

Linda Ficco
Friedrich-Schilller Universität Jena
Sep 18, 2023

People largely differ with respect to how well they can learn, memorize, and perceive faces. In this talk, I address two potential sources of variation. One factor might be people’s ability to adapt their perception to the kind of faces they are currently exposed to. For instance, some studies report that those who show larger adaptation effects are also better at performing face learning and memory tasks. Another factor might be people’s sensitivity to perceive fine differences between similar-looking faces. In fact, one study shows that the brain of good performers in a face memory task shows larger neural differences between similar-looking faces. Capitalizing on this body of evidence, I present a behavioural study where I explore the relationship between people’s perceptual adaptability and sensitivity and their individual face processing performance.

SeminarNeuroscience

Sleep deprivation and the human brain: from brain physiology to cognition”

Ali Salehinejad
Leibniz Research Centre for Working Environment & Human Factors, Dortmund, Germany
Aug 28, 2023

Sleep strongly affects synaptic strength, making it critical for cognition, especially learning and memory formation. Whether and how sleep deprivation modulates human brain physiology and cognition is poorly understood. Here we examined how overnight sleep deprivation vs overnight sufficient sleep affects (a) cortical excitability, measured by transcranial magnetic stimulation, (b) inducibility of long-term potentiation (LTP)- and long-term depression (LTD)-like plasticity via transcranial direct current stimulation (tDCS), and (c) learning, memory, and attention. We found that sleep deprivation increases cortical excitability due to enhanced glutamate-related cortical facilitation and decreases and/or reverses GABAergic cortical inhibition. Furthermore, tDCS-induced LTP-like plasticity (anodal) abolishes while the inhibitory LTD-like plasticity (cathodal) converts to excitatory LTP-like plasticity under sleep deprivation. This is associated with increased EEG theta oscillations due to sleep pressure. Motor learning, behavioral counterparts of plasticity, and working memory and attention, which rely on cortical excitability, are also impaired during sleep deprivation. Our study indicates that upscaled brain excitability and altered plasticity, due to sleep deprivation, are associated with impaired cognitive performance. Besides showing how brain physiology and cognition undergo changes (from neurophysiology to higher-order cognition) under sleep pressure, the findings have implications for variability and optimal application of noninvasive brain stimulation.

SeminarNeuroscience

Dynamic endocrine modulation of the nervous system

Emily Jabocs
US Santa Barbara Neuroscience
Apr 17, 2023

Sex hormones are powerful neuromodulators of learning and memory. In rodents and nonhuman primates estrogen and progesterone influence the central nervous system across a range of spatiotemporal scales. Yet, their influence on the structural and functional architecture of the human brain is largely unknown. Here, I highlight findings from a series of dense-sampling neuroimaging studies from my laboratory designed to probe the dynamic interplay between the nervous and endocrine systems. Individuals underwent brain imaging and venipuncture every 12-24 hours for 30 consecutive days. These procedures were carried out under freely cycling conditions and again under a pharmacological regimen that chronically suppresses sex hormone production. First, resting state fMRI evidence suggests that transient increases in estrogen drive robust increases in functional connectivity across the brain. Time-lagged methods from dynamical systems analysis further reveals that these transient changes in estrogen enhance within-network integration (i.e. global efficiency) in several large-scale brain networks, particularly Default Mode and Dorsal Attention Networks. Next, using high-resolution hippocampal subfield imaging, we found that intrinsic hormone fluctuations and exogenous hormone manipulations can rapidly and dynamically shape medial temporal lobe morphology. Together, these findings suggest that neuroendocrine factors influence the brain over short and protracted timescales.

SeminarNeuroscienceRecording

Developmentally structured coactivity in the hippocampal trisynaptic loop

Roman Huszár
Buzsáki Lab, New York University
Apr 4, 2023

The hippocampus is a key player in learning and memory. Research into this brain structure has long emphasized its plasticity and flexibility, though recent reports have come to appreciate its remarkably stable firing patterns. How novel information incorporates itself into networks that maintain their ongoing dynamics remains an open question, largely due to a lack of experimental access points into network stability. Development may provide one such access point. To explore this hypothesis, we birthdated CA1 pyramidal neurons using in-utero electroporation and examined their functional features in freely moving, adult mice. We show that CA1 pyramidal neurons of the same embryonic birthdate exhibit prominent cofiring across different brain states, including behavior in the form of overlapping place fields. Spatial representations remapped across different environments in a manner that preserves the biased correlation patterns between same birthdate neurons. These features of CA1 activity could partially be explained by structured connectivity between pyramidal cells and local interneurons. These observations suggest the existence of developmentally installed circuit motifs that impose powerful constraints on the statistics of hippocampal output.

SeminarNeuroscience

The Picower Institute 20th Anniversary Exhibition: Two Decades of Discovery & Impact

Ben Auerbach (Illinois), Joel Blanchard (Mt. Sinai), Emery N. Brown (MIT), Jerry Chen (BU), Steven Flavell (MIT), David Foster (UC Berkeley), Myriam Heiman (MIT), Sung-Yon Kim (Seoul National University), Jeong Tae Kwon (MIT), Earl K. Miller (MIT), Zachary Piccioli (Moderna), Mriganka Sur (MIT), Susumu Tonegawa (MIT)
Sep 21, 2022

On September 22, 2022 we will celebrate the 20th anniversary of The Picower Institute for Learning and Memory with an Exhibition Symposium — a day-long hybrid event highlighting "Two Decades of Discovery & Impact" since the launch of the Institute by a transformational gift from Barbara and Jeffry Picower. The symposium will feature a range of lay-friendly brain science talks from Picower Institute faculty and their alumni with opportunities to informally interact at lunch and at the reception that will follow the talks.

SeminarNeuroscience

Dissecting the role of accumbal D1 and D2 medium spiny neurons in information encoding

Munir Gunes Kutlu
Calipari Lab, Vanderbilt University
Feb 8, 2022

Nearly all motivated behaviors require the ability to associate outcomes with specific actions and make adaptive decisions about future behavior. The nucleus accumbens (NAc) is integrally involved in these processes. The NAc is a heterogeneous population primarily composed of D1 and D2 medium spiny projection (MSN) neurons that are thought to have opposed roles in behavior, with D1 MSNs promoting reward and D2 MSNs promoting aversion. Here we examined what types of information are encoded by the D1 and D2 MSNs using optogenetics, fiber photometry, and cellular resolution calcium imaging. First, we showed that mice responded for optical self-stimulation of both cell types, suggesting D2-MSN activation is not inherently aversive. Next, we recorded population and single cell activity patterns of D1 and D2 MSNs during reinforcement as well as Pavlovian learning paradigms that allow dissociation of stimulus value, outcome, cue learning, and action. We demonstrated that D1 MSNs respond to the presence and intensity of unconditioned stimuli – regardless of value. Conversely, D2 MSNs responded to the prediction of these outcomes during specific cues. Overall, these results provide foundational evidence for the discrete aspects of information that are encoded within the NAc D1 and D2 MSN populations. These results will significantly enhance our understanding of the involvement of the NAc MSNs in learning and memory as well as how these neurons contribute to the development and maintenance of substance use disorders.

SeminarNeuroscience

A nonlinear shot noise model for calcium-based synaptic plasticity

Bin Wang
Aljadeff lab, University of California San Diego, USA
Dec 8, 2021

Activity dependent synaptic plasticity is considered to be a primary mechanism underlying learning and memory. Yet it is unclear whether plasticity rules such as STDP measured in vitro apply in vivo. Network models with STDP predict that activity patterns (e.g., place-cell spatial selectivity) should change much faster than observed experimentally. We address this gap by investigating a nonlinear calcium-based plasticity rule fit to experiments done in physiological conditions. In this model, LTP and LTD result from intracellular calcium transients arising almost exclusively from synchronous coactivation of pre- and postsynaptic neurons. We analytically approximate the full distribution of nonlinear calcium transients as a function of pre- and postsynaptic firing rates, and temporal correlations. This analysis directly relates activity statistics that can be measured in vivo to the changes in synaptic efficacy they cause. Our results highlight that both high-firing rates and temporal correlations can lead to significant changes to synaptic efficacy. Using a mean-field theory, we show that the nonlinear plasticity rule, without any fine-tuning, gives a stable, unimodal synaptic weight distribution characterized by many strong synapses which remain stable over long periods of time, consistent with electrophysiological and behavioral studies. Moreover, our theory explains how memories encoded by strong synapses can be preferentially stabilized by the plasticity rule. We confirmed our analytical results in a spiking recurrent network. Interestingly, although most synapses are weak and undergo rapid turnover, the fraction of strong synapses are sufficient for supporting realistic spiking dynamics and serve to maintain the network’s cluster structure. Our results provide a mechanistic understanding of how stable memories may emerge on the behavioral level from an STDP rule measured in physiological conditions. Furthermore, the plasticity rule we investigate is mathematically equivalent to other learning rules which rely on the statistics of coincidences, so we expect that our formalism will be useful to study other learning processes beyond the calcium-based plasticity rule.

SeminarNeuroscience

Homeostatic structural plasticity of neuronal connectivity triggered by optogenetic stimulation

Han Lu
Vlachos lab, University of Freiburg, Germany
Nov 24, 2021

Ever since Bliss and Lømo discovered the phenomenon of long-term potentiation (LTP) in rabbit dentate gyrus in the 1960s, Hebb’s rule—neurons that fire together wire together—gained popularity to explain learning and memory. Accumulating evidence, however, suggests that neural activity is homeostatically regulated. Homeostatic mechanisms are mostly interpreted to stabilize network dynamics. However, recent theoretical work has shown that linking the activity of a neuron to its connectivity within the network provides a robust alternative implementation of Hebb’s rule, although entirely based on negative feedback. In this setting, both natural and artificial stimulation of neurons can robustly trigger network rewiring. We used computational models of plastic networks to simulate the complex temporal dynamics of network rewiring in response to external stimuli. In parallel, we performed optogenetic stimulation experiments in the mouse anterior cingulate cortex (ACC) and subsequently analyzed the temporal profile of morphological changes in the stimulated tissue. Our results suggest that the new theoretical framework combining neural activity homeostasis and structural plasticity provides a consistent explanation of our experimental observations.

SeminarNeuroscienceRecording

Phase precession in the human hippocampus and entorhinal cortex

Salman Qasim
Gu Lab, Icahn School of Medicine at Mount Sinai
Nov 16, 2021

Knowing where we are, where we have been, and where we are going is critical to many behaviors, including navigation and memory. One potential neuronal mechanism underlying this ability is phase precession, in which spatially tuned neurons represent sequences of positions by activating at progressively earlier phases of local network theta oscillations. Based on studies in rodents, researchers have hypothesized that phase precession may be a general neural pattern for representing sequential events for learning and memory. By recording human single-neuron activity during spatial navigation, we show that spatially tuned neurons in the human hippocampus and entorhinal cortex exhibit phase precession. Furthermore, beyond the neural representation of locations, we show evidence for phase precession related to specific goal states. Our find- ings thus extend theta phase precession to humans and suggest that this phenomenon has a broad func- tional role for the neural representation of both spatial and non-spatial information.

SeminarNeuroscience

Cognition is Rhythm

Earl K. Miller
Picower Institute for Learning and Memory at the Massachusetts Institute of Technology
Nov 1, 2021

Working memory is the sketchpad of consciousness, the fundamental mechanism the brain uses to gain volitional control over its thoughts and actions. For the past 50 years, working memory has been thought to rely on cortical neurons that fire continuous impulses that keep thoughts “online”. However, new work from our lab has revealed more complex dynamics. The impulses fire sparsely and interact with brain rhythms of different frequencies. Higher frequency gamma (>35 Hz) rhythms help carry the contents of working memory while lower frequency alpha/beta (~8-30 Hz) rhythms act as control signals that gate access to and clear out working memory. In other words, a rhythmic dance between brain rhythms may underlie your ability to control your own thoughts.

SeminarNeuroscienceRecording

Activity dependent myelination: a mechanism for learning and regeneration?

Thóra Káradóttir
WT-MRC Stem Cell Institute, University of Cambridge
Oct 11, 2021

The CNS is responsive to an ever-changing environment. Until recently, studies of neural plasticity focused almost exclusively on functional and structural changes of neuronal synapses. In recent years, myelin plasticity has emerged as a potential modulator of neural networks. Myelination of previously unmyelinated axons, and changes in the structure on already-myelinated axons, can have large effects on network function. The heterogeneity of the extent of how axons in the CNS are myelinated offers diverse scope for dynamic myelin changes to fine-tune neural circuits. The traditionally held view of myelin as a passive insulator of axons is now changing to one of lifelong changes in myelin, modulated by neuronal activity and experience. Myelin, produced by oligodendrocytes (OLs), is essential for normal brain function, as it provides fast signal transmission, promotes synchronization of neuronal signals and helps to maintain neuronal function. OLs differentiate from oligodendrocyte precursor cells (OPCs), which are distributed throughout the adult brain, and myelination continues into late adulthood. OPCs can sense neuronal activity as they receive synaptic inputs from neurons and express voltage-gated ion channels and neurotransmitter receptors, and differentiate into myelinating OLs in response to changes in neuronal activity. This lecture will explore to what extent myelin plasticity occurs in adult animals, whether myelin changes occur in non-motor learning tasks, especially in learning and memory, and questions whether myelin plasticity and myelin regeneration are two sides of the same coin.

SeminarNeuroscienceRecording

Acetylcholine modulation of short-term plasticity is critical to reliable long-term plasticity in hippocampal synapses

Rohan Sharma
Suhita lab, Indian Institute of Science Education and Research Pune
Jul 27, 2021

CA3-CA1 synapses in the hippocampus are the initial locus of episodic memory. The action of acetylcholine alters cellular excitability, modifies neuronal networks, and triggers secondary signaling that directly affects long-term plasticity (LTP) (the cellular underpinning of memory). It is therefore considered a critical regulator of learning and memory in the brain. Its action via M4 metabotropic receptors in the presynaptic terminal of the CA3 neurons and M1 metabotropic receptors in the postsynaptic spines of CA1 neurons produce rich dynamics across multiple timescales. We developed a model to describe the activation of postsynaptic M1 receptors that leads to IP3 production from membrane PIP2 molecules. The binding of IP3 to IP3 receptors in the endoplasmic reticulum (ER) ultimately causes calcium release. This calcium release from the ER activates potassium channels like the calcium-activated SK channels and alters different aspects of synaptic signaling. In an independent signaling cascade, M1 receptors also directly suppress SK channels and the voltage-activated KCNQ2/3 channels, enhancing post-synaptic excitability. In the CA3 presynaptic terminal, we model the reduction of the voltage sensitivity of voltage-gated calcium channels (VGCCs) and the resulting suppression of neurotransmitter release by the action of the M4 receptors. Our results show that the reduced initial release probability because of acetylcholine alters short-term plasticity (STP) dynamics. We characterize the dichotomy of suppressing neurotransmitter release from CA3 neurons and the enhanced excitability of the postsynaptic CA1 spine. Mechanisms underlying STP operate over a few seconds, while those responsible for LTP last for hours, and both forms of plasticity have been linked with very distinct functions in the brain. We show that the concurrent suppression of neurotransmitter release and increased sensitivity conserves neurotransmitter vesicles and enhances the reliability in plasticity. Our work establishes a relationship between STP and LTP coordinated by neuromodulation with acetylcholine.

SeminarPsychology

The Jena Voice Learning and Memory Test (JVLMT)

Romi Zäske
University of Jena
May 26, 2021

The ability to recognize someone’s voice spans a broad spectrum with phonagnosia on the low end and super recognition at the high end. Yet there is no standardized test to measure the individual ability to learn and recognize newly-learnt voices with samples of speech-like phonetic variability. We have developed the Jena Voice Learning and Memory Test (JVLMT), a 20 min-test based on item response theory and applicable across different languages. The JVLMT consists of three phases in which participants are familiarized with eight speakers in two stages and then perform a three-alternative forced choice recognition task, using pseudo sentences devoid of semantic content. Acoustic (dis)similarity analyses were used to create items with different levels of difficulty. Test scores are based on 22 Rasch-conform items. Items were selected and validated in online studies based on 232 and 454 participants, respectively. Mean accuracy is 0.51 with an SD of .18. The JVLMT showed high and moderate correlations with convergent validation tests (Bangor Voice Matching Test; Glasgow Voice Memory Test) and a weak correlation with a discriminant validation test (Digit Span). Empirical (marginal) reliability is 0.66. Four participants with super recognition (at least 2 SDs above the mean) and 7 participants with phonagnosia (at least 2 SDs below the mean) were identified. The JVLMT is a promising screen too for voice recognition abilities in a scientific and neuropsychological context.

SeminarNeuroscience

New Strategies and Approaches to Tackle and Understand Neurological Disorder

Mauro Costa-Mattioli
The Memory & Brain Research Center (MBRC), Baylor College of Medicine, Houston, Texas, USA
Mar 17, 2021

Broadly, the Mauro Costa-Mattioli laboratory (The MCM Lab) encompasses two complementary lines of research. The first one, more traditional but very important, aims at unraveling the molecular mechanisms underlying memory formation (e.g., using state-of-the-art molecular and cell-specific genetic approaches). Learning and memory disorders can strike the brain during development (e.g., Autism Spectrum Disorders and Down Syndrome), as well as during adulthood (e.g., Alzheimer’s disease). We are interested in understanding the specific circuits and molecular pathways that are primarily targeted in these disorders and how they can be restored. To tackle these questions, we use a multidisciplinary, convergent and cross-species approach that combines mouse and fly genetics, molecular biology, electrophysiology, stem cell biology, optogenetics and behavioral techniques. The second line of research, more recent and relatively unexplored, is focused on understanding how gut microbes control CNS driven-behavior and brain function. Our recent discoveries, that microbes in the gut could modulate brain function and behavior in a very powerful way, have added a whole new dimension to the classic view of how complex behaviors are controlled. The unexpected findings have opened new avenues of study for us and are currently driving my lab to answer a host of new and very interesting questions: - What are the gut microbes (and metabolites) that regulate CNS-driven behaviors? Would it be possible to develop an unbiased screening method to identify specific microbes that regulate different behaviors? - If this is the case, can we identify how members of the gut microbiome (and their metabolites) mechanistically influence brain function? - What is the communication channel between the gut microbiota and the brain? Do different gut microbes use different ways to interact with the brain? - Could disruption of the gut microbial ecology cause neurodevelopmental dysfunction? If so, what is the impact of disruption in young and adult animals? - More importantly, could specific restoration of selected bacterial strains (new generation probiotics) represent a novel therapeutic approach for the targeted treatment of neurodevelopmental disorders? - Finally, can we develop microbiota-directed therapeutic foods to repair brain dysfunction in a variety of neurological disorders?

SeminarNeuroscience

Blurring the boundaries between neuroscience and organismal physiology

Gérard Karsenty
Columbia University
Dec 13, 2020

Work in my laboratory is based on the assumptions that we do not know yet how all physiological functions are regulated and that mouse genetics by allowing to identify novel inter-organ communications is the most efficient ways to identify novel regulation of physiological functions. We test these two contention through the study of bone which is the organ my lab has studied since its inception. Based on precise cell biological and clinical reasons that will be presented during the seminar we hypothesized that bone should be a regulator of energy metabolism and reproduction and identified a bone-derived hormone termed osteocalcin that is responsible of these regulatory events. The study of this hormone revealed that in addition to its predicted functions it also regulates brain size, hippocampus development, prevents anxiety and depression and favors spatial learning and memory by signaling through a specific receptor we characterized. As will be presented, we elucidated some of the molecular events accounting for the influence of osteocalcin on brain and showed that maternal osteocalcin is the pool of this hormone that affects brain development. Subsequently and looking at all the physiological functions regulated by osteocalcin, i.e., memory, the ability to exercise, glucose metabolism, the regulation of testosterone biosynthesis, we realized that are all need or regulated in the case of danger. In other words it suggested that osteocalcin is an hormone needed to sense and overcome acute danger. Consonant with this hypothesis we next showed this led us to demonstrate that bone via osteocalcin is needed to mount an acute stress response through molecular and cellular mechanisms that will be presented during the seminar. overall, an evolutionary appraisal of bone biology, this body of work and experiments ongoing in the lab concur to suggest 1] the appearance of bone during evolution has changed how physiological functions as diverse as memory, the acute stress response but also exercise and glucose metabolism are regulated and 2] identified bone and osteocalcin as its molecular vector, as an organ needed to sense and response to danger.

SeminarNeuroscience

Leveraging olfaction to understand how the brain and the body generate social behavior

Lisa Stowers
Scripps research institute
Nov 29, 2020

Courtship behavior is an innate model for many types of brain computations including sensory detection, learning and memory, and internal state modulation. Despite the robustness of the behavior, we have little understanding of the underlying neural circuits and mechanisms. The Stowers’ lab is leveraging the ability of specialized olfactory cues, pheromones, to specifically activate and therefore identify and study courtship circuits in the mouse. We are interested in identifying general circuit principles (specific brain nodes and information flow) that are common to all individuals, in order to additionally study how experience, gender, age, and internal state modulate and personalize behavior. We are solving two parallel sensory to motor courtship circuits, that promote social vocal calling and scent marking, to study information processing of behavior as a complete unit instead of restricting focus to a single brain region. We expect comparing and contrasting the coding logic of two courtship motor behaviors will begin to shed light on general principles of how the brain senses context, weighs experience and responds to internal state to ultimately decide appropriate action.

SeminarNeuroscience

Neuronal morphology imposes a tradeoff between stability, accuracy and efficiency of synaptic scaling

Adriano Bellotti
University of Cambridge
Jul 19, 2020

Synaptic scaling is a homeostatic normalization mechanism that preserves relative synaptic strengths by adjusting them with a common factor. This multiplicative change is believed to be critical, since synaptic strengths are involved in learning and memory retention. Further, this homeostatic process is thought to be crucial for neuronal stability, playing a stabilizing role in otherwise runaway Hebbian plasticity [1-3]. Synaptic scaling requires a mechanism to sense total neuron activity and globally adjust synapses to achieve some activity set-point [4]. This process is relatively slow, which places limits on its ability to stabilize network activity [5]. Here we show that this slow response is inevitable in realistic neuronal morphologies. Furthermore, we reveal that global scaling can in fact be a source of instability unless responsiveness or scaling accuracy are sacrificed." "A neuron with tens of thousands of synapses must regulate its own excitability to compensate for changes in input. The time requirement for global feedback can introduce critical phase lags in a neuron’s response to perturbation. The severity of phase lag increases with neuron size. Further, a more expansive morphology worsens cell responsiveness and scaling accuracy, especially in distal regions of the neuron. Local pools of reserve receptors improve efficiency, potentiation, and scaling, but this comes at a cost. Trafficking large quantities of receptors requires time, exacerbating the phase lag and instability. Local homeostatic feedback mitigates instability, but this too comes at the cost of reducing scaling accuracy." "Realization of the phase lag instability requires a unified model of synaptic scaling, regulation, and transport. We present such a model with global and local feedback in realistic neuron morphologies (Fig. 1). This combined model shows that neurons face a tradeoff between stability, accuracy, and efficiency. Global feedback is required for synaptic scaling but favors either system stability or efficiency. Large receptor pools improve scaling accuracy in large morphologies but worsen both stability and efficiency. Local feedback improves the stability-efficiency tradeoff at the cost of scaling accuracy. This project introduces unexplored constraints on neuron size, morphology, and synaptic scaling that are weakened by an interplay between global and local feedback.

SeminarNeuroscience

Using evolutionary algorithms to explore single-cell heterogeneity and microcircuit operation in the hippocampus

Andrea Navas-Olive
Instituto Cajal CSIC
Jul 18, 2020

The hippocampus-entorhinal system is critical for learning and memory. Recent cutting-edge single-cell technologies from RNAseq to electrophysiology are disclosing a so far unrecognized heterogeneity within the major cell types (1). Surprisingly, massive high-throughput recordings of these very same cells identify low dimensional microcircuit dynamics (2,3). Reconciling both views is critical to understand how the brain operates. " "The CA1 region is considered high in the hierarchy of the entorhinal-hippocampal system. Traditionally viewed as a single layered structure, recent evidence has disclosed an exquisite laminar organization across deep and superficial pyramidal sublayers at the transcriptional, morphological and functional levels (1,4,5). Such a low-dimensional segregation may be driven by a combination of intrinsic, biophysical and microcircuit factors but mechanisms are unknown." "Here, we exploit evolutionary algorithms to address the effect of single-cell heterogeneity on CA1 pyramidal cell activity (6). First, we developed a biophysically realistic model of CA1 pyramidal cells using the Hodgkin-Huxley multi-compartment formalism in the Neuron+Python platform and the morphological database Neuromorpho.org. We adopted genetic algorithms (GA) to identify passive, active and synaptic conductances resulting in realistic electrophysiological behavior. We then used the generated models to explore the functional effect of intrinsic, synaptic and morphological heterogeneity during oscillatory activities. By combining results from all simulations in a logistic regression model we evaluated the effect of up/down-regulation of different factors. We found that muyltidimensional excitatory and inhibitory inputs interact with morphological and intrinsic factors to determine a low dimensional subset of output features (e.g. phase-locking preference) that matches non-fitted experimental data.

SeminarNeuroscience

Cortical plasticity

Mriganka Sur
MIT Department of Brain and Cognitive Sciences
May 20, 2020

Plasticity shapes the brain during development, and mechanisms of plasticity continue into adulthood to enable learning and memory. Nearly all brain functions are influenced by past events, reinforcing the view that the confluence of plasticity and computation in the same circuit elements is a core component of biological intelligence. My laboratory studies plasticity in the cerebral cortex during development, and plasticity during behaviour that is manifest as cortical dynamics. I will describe how cortical plasticity is implemented by learning rules that involve not only Hebbian changes and synaptic scaling but also dendritic renormalization. By using advanced techniques such as optical measurements of single-synapse function and structure in identified neurons in awake behaving mice, we have recently demonstrated locally coordinated plasticity in dendrites whereby specific synapses are strengthened and adjacent synapses with complementary features are weakened. Together, these changes cooperatively implement functional plasticity in neurons. Such plasticity relies on the dynamics of activity-dependent molecules within and between synapses. Alongside, it is increasingly clear that risk genes associated with neurodevelopmental disorders disproportionately target molecules of plasticity. Deficits in renormalization contribute fundamentally to dysfunctional neuronal circuits and computations, and may be a unifying mechanistic feature of these disorders.

ePoster

Knocking out co-active plasticity rules in neural networks reveals synapse type-specific contributions for learning and memory

Zoe Harrington, Basile Confavreux, Pedro Gonçalves, Jakob Macke, Tim Vogels

Bernstein Conference 2024

ePoster

Activity-dependent splicing is crucial for learning and memory

Julien Courtin*, Sivan Kanner*, Cloé L’Heraux, Coline Riffault, Christian Müller, Andreas Lüthi, Peter Scheiffele#, Oriane Mauger

FENS Forum 2024

ePoster

Bidirectional manipulation of orexinergic neurons shows sexual dimorphism in learning and memory

Alexis Vega Medina, Joelle Chiu, John N. Neeley, Anna Wirthlin, Nejra Terzic, Miles Hirsch, Sara J. Saton

FENS Forum 2024

ePoster

Communication between the hippocampus, nucleus accumbens, and ventral tegmental area during learning and memory

Raphael Brito, Linda Kokou, Maxime Linard, Anna Aldanondo, Sara Simula, Ralitsa Todorova, Marco Pompili, Michaël Zugaro

FENS Forum 2024

ePoster

Diurnal variation of learning and memory and molecular approach in mice and nonhuman primates

Kimiko Shimizu, Yodai Kobayashi, Ken-ichi Inoue, Masahiko Takada, Takao Oishi, Hiroo Imai, Yoshitaka Fukada

FENS Forum 2024

ePoster

Functional dissection of the corticohippocampal circuit underlying neuronal ensemble dynamics in spatial learning and memory

Haoyu Xu, Zhongjie Zhang, Hei Matthew Yip, Jacque Pak Kan Ip

FENS Forum 2024

ePoster

Hippocampal-thalamo-cortical coupling in spatial learning and memory consolidation

Myriam Azzarelli, Antoine Ghestem, Vinicius Lima Cordeiro, Paul-Arno Lamarque, Maëva Ferraris, Christophe Bernard, Marco Pompili, Pascale Quilichini

FENS Forum 2024

ePoster

Lifelong consumption of saturated and unsaturated fats induced the impairment of hippocampal synaptic plasticity and spatial learning and memory

Ana Belén Sanz-Martos, María Roca, Adrián Plaza, Beatriz Merino, Mariano Ruiz-Gayo, Nuria Del Olmo

FENS Forum 2024