← Back

Learning Deficit

Topic spotlight
TopicWorld Wide

learning deficit

Discover seminars, jobs, and research tagged with learning deficit across World Wide.
3 curated items2 Seminars1 ePoster
Updated almost 3 years ago
3 items · learning deficit
3 results
SeminarNeuroscience

Targeting thalamic circuits rescues motor and mood deficits in PD mice

Dheeraj Roy
Feng Lab, Broad Institute of MIT and Harvard
Jan 31, 2023

Although bradykinesia, tremor, and rigidity are hallmark motor defects in Parkinson’s disease (PD) patients, they also experience motor learning impairments and non-motor symptoms such as depression. The neural basis for these different PD symptoms are not well understood. While current treatments are effective for locomotion deficits in PD, therapeutic strategies targeting motor learning deficits and non-motor symptoms are lacking. We found that distinct parafascicular (PF) thalamic subpopulations project to caudate putamen (CPu), subthalamic nucleus (STN), and nucleus accumbens (NAc). While PF-->CPu and PF-->STN circuits are critical for locomotion and motor learning respectively, inhibition of the PF-->NAc circuit induced a depression-like state. While chemogenetically manipulating CPu-projecting PF neurons led to a long-term restoration of locomotion, optogenetic long-term potentiation at PF-->STN synapses restored motor learning behavior in PD model mice. Furthermore, activation of NAc-projecting PF neurons rescued depression-like PD phenotypes. Importantly, we identified nicotinic acetylcholine receptors capable of modulating PF circuits to rescue different PD phenotypes. Thus, targeting PF thalamic circuits may be an effective strategy for treating motor and non-motor deficits in PD.

SeminarNeuroscienceRecording

Mechanistic insights from a mouse model of HCN1 developmental epileptic encephalopathy

Christopher Reid
The Florey Institute of Neuroscience and Mental Health
Aug 17, 2021

Pathogenic variants in HCN1 are associated with severe developmental and epileptic encephalopathies (DEE). We have engineered the Hcn1 M294L heterozygous knock-in (Hcn1M294L) mouse which is a homolog of the de novo HCN1 M305L recurrent pathogenic variant. The mouse recapitulates the phenotypic features of patients including having spontaneous seizures and a learning deficit. In this talk I will present experimental work that probes the molecular and cellular mechanisms underlying hyper-excitability in the mouse model. This will include testing the efficacy of currently available antiepileptic drugs and a novel precision medicine approach. I will also briefly touch on how disease biology can give insights into the biophysical properties of HCN channels.

ePoster

Postnatal Cajal-Retzius cell ablation induced learning deficits in young adult mice

Ingvild Glærum, Rob Machold, Giulia Quattrocolo

FENS Forum 2024