← Back

Lipid Metabolism

Topic spotlight
TopicWorld Wide

lipid metabolism

Discover seminars, jobs, and research tagged with lipid metabolism across World Wide.
6 curated items5 Seminars1 ePoster
Updated about 2 years ago
6 items · lipid metabolism
6 results
SeminarNeuroscienceRecording

Cholesterol and matrisome pathways dysregulated in Alzheimer’s disease brain astrocytes and microglia

Julia TCW
Boston University
Dec 15, 2022

The impact of apolipoprotein E ε4 (APOE4), the strongest genetic risk factor for Alzheimer’s disease (AD), on human brain cellular function remains unclear. Here, we investigated the effects of APOE4 on brain cell types derived from population and isogenic human induced pluripotent stem cells, post-mortem brain, and APOE targeted replacement mice. Population and isogenic models demonstrate that APOE4 local haplotype, rather than a single risk allele, contributes to risk. Global transcriptomic analyses reveal human-specific, APOE4-driven lipid metabolic dysregulation in astrocytes and microglia. APOE4 enhances de novo cholesterol synthesis despite elevated intracellular cholesterol due to lysosomal cholesterol sequestration in astrocytes. Further, matrisome dysregulation is associated with upregulated chemotaxis, glial activation, and lipid biosynthesis in astrocytes co-cultured with neurons, which recapitulates altered astrocyte matrisome signaling in human brain. Thus, APOE4 initiates glia-specific cell and non-cell autonomous dysregulation that may contribute to increased AD risk." https://doi.org/10.1016/j.cell.2022.05.017

SeminarNeuroscienceRecording

Phospholipid regulation in cognitive impairment and vascular dementia

Gloria Patricia Cardona-Gómez
School of Medicine at University of Antioquia, Medellín, Colombia
Dec 13, 2020

An imbalance in lipid metabolism in neurodegeneration is still poorly understood. Phospholipids (PLs) have multifactorial participation in vascular dementia as Alzheimer, post-stroke dementia, CADASIL between others. Which include the hyperactivation of phospholipases, mitochondrial stress, peroxisomal dysfunction and irregular fatty acid composition triggering proinflammation in a very early stage of cognitive impairment. The reestablishment of physiological conditions of cholesterol, sphingolipids, phospholipids and others are an interesting therapeutic target to reduce the progression of AD. We propose the positive effect of BACE1 silencing produces a balance of phospholipid profile in desaturase enzymes-depending mode to reduce the inflammation response, and recover the cognitive function in an Alzheimer´s animal and brain stroke models. Pointing out there is a great need for new well-designed research focused in preventing phospholipids imbalance, and their consequent energy metabolism impairment, pro-inflammation and enzymatic over-processing, which would help to prevent unhealthy aging and AD progression.

SeminarNeuroscience

Neurocircuits in control of integrative physiology

Jens Brüning
Max Planck Institute for Metabolism Research
Oct 28, 2020

This open colloquia session is part of the special workshop entitled "Obesity at the Interface of Neuroscience and Physiology II". Abstract: Proopiomelanocortin (POMC)- and agouti related peptide (AgRP)-expressing neurons in the arcuate nucleus of the hypothalamus (ARH) are critical regulators of food intake and energy homeostasis. They rapidly integrate the energy state of the organism through sensing fuel availability via hormones, nutrient components and even rapidly upon sensory food perception. Importantly, they not only regulate feeding responses, but numerous autonomic responses including glucose and lipid metabolism, inflammation and blood pressure. More recently, we could demonstrate that sensory food cue-dependent regulation of POMC neurons primes the hepatic endoplasmic reticulum (ER) stress response to prime liver metabolism for the postpramndial state. The presentation will focus on the regulation of these neurons in control of integrative physiology, the identification of distinct neuronal circuitries targeted by these cells and finally on the broad range implications resulting from dysregulation of these circuits as a consequence of altered maternal metabolism.

ePoster

Dysregulated lipid metabolism and neuroinflammation following high-fat diet in the TDP-43Q331K-low transgenic mouse model of ALS-FTD

Cortina Chen, Fredrick Arnold, Andrian Yang, Martin Giera, Albert La Spada, Florian Merkle

FENS Forum 2024