Localisation
localisation
Localisation of Seizure Onset Zone in Epilepsy Using Time Series Analysis of Intracranial Data
There are over 30 million people with drug-resistant epilepsy worldwide. When neuroimaging and non-invasive neural recordings fail to localise seizure onset zones (SOZ), intracranial recordings become the best chance for localisation and seizure-freedom in those patients. However, intracranial neural activities remain hard to visually discriminate across recording channels, which limits the success of intracranial visual investigations. In this presentation, I present methods which quantify intracranial neural time series and combine them with explainable machine learning algorithms to localise the SOZ in the epileptic brain. I present the potentials and limitations of our methods in the localisation of SOZ in epilepsy providing insights for future research in this area.
Stochastic control of passive colloidal objects by micro-swimmers
The way single colloidal objects behave in presence of active forces arising from within the bulk of the system is crucial to many situations, notably biological and ecological (e.g. intra-cellular transport, predation), and potential medical or environmental applications (e.g. targeted delivery of cargoes, depollution of waters and soils). In this talk I will present experimental findings that my collaborators and I have obtained over the past years on the dynamics of single Brownian colloids in suspensions of biological micro-swimmers, especially the green alga Chlamydomonas reinhardtii. I'll show notably that spatial heterogeneities and anisotropies in the active particles statistics can control the preferential localisation of their passive counterparts. The results will be rationalized using theoretical approaches from hydrodynamics and stochastic processes.
Localisation and interactome analysis of dystrophin isoforms in the mouse brain
FENS Forum 2024