Magnetic Resonance
magnetic resonance
Trends in NeuroAI - Meta's MEG-to-image reconstruction
Trends in NeuroAI is a reading group hosted by the MedARC Neuroimaging & AI lab (https://medarc.ai/fmri). This will be an informal journal club presentation, we do not have an author of the paper joining us. Title: Brain decoding: toward real-time reconstruction of visual perception Abstract: In the past five years, the use of generative and foundational AI systems has greatly improved the decoding of brain activity. Visual perception, in particular, can now be decoded from functional Magnetic Resonance Imaging (fMRI) with remarkable fidelity. This neuroimaging technique, however, suffers from a limited temporal resolution (≈0.5 Hz) and thus fundamentally constrains its real-time usage. Here, we propose an alternative approach based on magnetoencephalography (MEG), a neuroimaging device capable of measuring brain activity with high temporal resolution (≈5,000 Hz). For this, we develop an MEG decoding model trained with both contrastive and regression objectives and consisting of three modules: i) pretrained embeddings obtained from the image, ii) an MEG module trained end-to-end and iii) a pretrained image generator. Our results are threefold: Firstly, our MEG decoder shows a 7X improvement of image-retrieval over classic linear decoders. Second, late brain responses to images are best decoded with DINOv2, a recent foundational image model. Third, image retrievals and generations both suggest that MEG signals primarily contain high-level visual features, whereas the same approach applied to 7T fMRI also recovers low-level features. Overall, these results provide an important step towards the decoding - in real time - of the visual processes continuously unfolding within the human brain. Speaker: Dr. Paul Scotti (Stability AI, MedARC) Paper link: https://arxiv.org/abs/2310.19812
Inducing short to medium neuroplastic effects with Transcranial Ultrasound Stimulation
Sound waves can be used to modify brain activity safely and transiently with unprecedented precision even deep in the brain - unlike traditional brain stimulation methods. In a series of studies in humans and non-human primates, I will show that Transcranial Ultrasound Stimulation (TUS) can have medium- to long-lasting effects. Multiple read-outs allow us to conclude that TUS can perturb neuronal tissues up to 2h after intervention, including changes in local and distributed brain network configurations, behavioural changes, task-related neuronal changes and chemical changes in the sonicated focal volume. Combined with multiple neuroimaging techniques (resting state functional Magnetic Resonance Imaging [rsfMRI], Spectroscopy [MRS] and task-related fMRI changes), this talk will focus on recent human TUS studies.
Trends in NeuroAI - SwiFT: Swin 4D fMRI Transformer
Trends in NeuroAI is a reading group hosted by the MedARC Neuroimaging & AI lab (https://medarc.ai/fmri). Title: SwiFT: Swin 4D fMRI Transformer Abstract: Modeling spatiotemporal brain dynamics from high-dimensional data, such as functional Magnetic Resonance Imaging (fMRI), is a formidable task in neuroscience. Existing approaches for fMRI analysis utilize hand-crafted features, but the process of feature extraction risks losing essential information in fMRI scans. To address this challenge, we present SwiFT (Swin 4D fMRI Transformer), a Swin Transformer architecture that can learn brain dynamics directly from fMRI volumes in a memory and computation-efficient manner. SwiFT achieves this by implementing a 4D window multi-head self-attention mechanism and absolute positional embeddings. We evaluate SwiFT using multiple large-scale resting-state fMRI datasets, including the Human Connectome Project (HCP), Adolescent Brain Cognitive Development (ABCD), and UK Biobank (UKB) datasets, to predict sex, age, and cognitive intelligence. Our experimental outcomes reveal that SwiFT consistently outperforms recent state-of-the-art models. Furthermore, by leveraging its end-to-end learning capability, we show that contrastive loss-based self-supervised pre-training of SwiFT can enhance performance on downstream tasks. Additionally, we employ an explainable AI method to identify the brain regions associated with sex classification. To our knowledge, SwiFT is the first Swin Transformer architecture to process dimensional spatiotemporal brain functional data in an end-to-end fashion. Our work holds substantial potential in facilitating scalable learning of functional brain imaging in neuroscience research by reducing the hurdles associated with applying Transformer models to high-dimensional fMRI. Speaker: Junbeom Kwon is a research associate working in Prof. Jiook Cha’s lab at Seoul National University. Paper link: https://arxiv.org/abs/2307.05916
Interacting spiral wave patterns underlie complex brain dynamics and are related to cognitive processing
The large-scale activity of the human brain exhibits rich and complex patterns, but the spatiotemporal dynamics of these patterns and their functional roles in cognition remain unclear. Here by characterizing moment-by-moment fluctuations of human cortical functional magnetic resonance imaging signals, we show that spiral-like, rotational wave patterns (brain spirals) are widespread during both resting and cognitive task states. These brain spirals propagate across the cortex while rotating around their phase singularity centres, giving rise to spatiotemporal activity dynamics with non-stationary features. The properties of these brain spirals, such as their rotational directions and locations, are task relevant and can be used to classify different cognitive tasks. We also demonstrate that multiple, interacting brain spirals are involved in coordinating the correlated activations and de-activations of distributed functional regions; this mechanism enables flexible reconfiguration of task-driven activity flow between bottom-up and top-down directions during cognitive processing. Our findings suggest that brain spirals organize complex spatiotemporal dynamics of the human brain and have functional correlates to cognitive processing.
In vivo direct imaging of neuronal activity at high temporospatial resolution
Advanced noninvasive neuroimaging methods provide valuable information on the brain function, but they have obvious pros and cons in terms of temporal and spatial resolution. Functional magnetic resonance imaging (fMRI) using blood-oxygenation-level-dependent (BOLD) effect provides good spatial resolution in the order of millimeters, but has a poor temporal resolution in the order of seconds due to slow hemodynamic responses to neuronal activation, providing indirect information on neuronal activity. In contrast, electroencephalography (EEG) and magnetoencephalography (MEG) provide excellent temporal resolution in the millisecond range, but spatial information is limited to centimeter scales. Therefore, there has been a longstanding demand for noninvasive brain imaging methods capable of detecting neuronal activity at both high temporal and spatial resolution. In this talk, I will introduce a novel approach that enables Direct Imaging of Neuronal Activity (DIANA) using MRI that can dynamically image neuronal spiking activity in milliseconds precision, achieved by data acquisition scheme of rapid 2D line scan synchronized with periodically applied functional stimuli. DIANA was demonstrated through in vivo mouse brain imaging on a 9.4T animal scanner during electrical whisker-pad stimulation. DIANA with milliseconds temporal resolution had high correlations with neuronal spike activities, which could also be applied in capturing the sequential propagation of neuronal activity along the thalamocortical pathway of brain networks. In terms of the contrast mechanism, DIANA was almost unaffected by hemodynamic responses, but was subject to changes in membrane potential-associated tissue relaxation times such as T2 relaxation time. DIANA is expected to break new ground in brain science by providing an in-depth understanding of the hierarchical functional organization of the brain, including the spatiotemporal dynamics of neural networks.
A parsimonious description of global functional brain organization in three spatiotemporal patterns
Resting-state functional magnetic resonance imaging (MRI) has yielded seemingly disparate insights into large-scale organization of the human brain. The brain’s large-scale organization can be divided into two broad categories: zero-lag representations of functional connectivity structure and time-lag representations of traveling wave or propagation structure. In this study, we sought to unify observed phenomena across these two categories in the form of three low-frequency spatiotemporal patterns composed of a mixture of standing and traveling wave dynamics. We showed that a range of empirical phenomena, including functional connectivity gradients, the task-positive/task-negative anti-correlation pattern, the global signal, time-lag propagation patterns, the quasiperiodic pattern and the functional connectome network structure, are manifestations of these three spatiotemporal patterns. These patterns account for much of the global spatial structure that underlies functional connectivity analyses and unifies phenomena in resting-state functional MRI previously thought distinct.
The glymphatic system in motor neurone disease
Neurodegenerative diseases are chronic and inexorable conditions characterised by the presence of insoluble aggregates of abnormally ubiquinated and phosphorylated proteins. Recent evidence also suggests that protein misfolding can propagate throughout the body in a prion-like fashion via the interstitial or cerebrospinal fluids (CSF). As protein aggregation occurs well before the onset of brain damage and symptoms, new biomarkers sensitive to early pathology, together with therapeutic strategies that include eliminating seed proteins and blocking cell-to-cell spread, are of vital importance. The glymphatic system, which facilitates the continuous exchange of CSF and interstitial fluid to clear the brain of waste, presents as a potential biomarker of disease severity, therapeutic target, and drug delivery system. In this webinar, Associate Professor David Wright from the Department of Neuroscience, Monash University, will outline recent advances in using MRI to investigate the glymphatic system. He will also present some of his lab’s recent work investigating glymphatic clearance in preclinical models of motor neurone disease. Associate Professor David Wright is an NHMRC Emerging Leadership Fellow and the Director of Preclinical Imaging in the Department of Neuroscience, Monash University and the Alfred Research Alliance, Alfred Health. His research encompasses the development, application and analysis of advanced magnetic resonance imaging techniques for the study of disease, with a particular emphasis on neurodegenerative disorders. Although less than three years post PhD, he has published over 60 peer-reviewed journal articles in leading neuroscience journals such as Nature Medicine, Brain, and Cerebral Cortex.
Language Representations in the Human Brain: A naturalistic approach
Natural language is strongly context-dependent and can be perceived through different sensory modalities. For example, humans can easily comprehend the meaning of complex narratives presented through auditory speech, written text, or visual images. To understand how complex language-related information is represented in the human brain there is a necessity to map the different linguistic and non-linguistic information perceived under different modalities across the cerebral cortex. To map this information to the brain, I suggest following a naturalistic approach and observing the human brain performing tasks in its naturalistic setting, designing quantitative models that transform real-world stimuli into specific hypothesis-related features, and building predictive models that can relate these features to brain responses. In my talk, I will present models of brain responses collected using functional magnetic resonance imaging while human participants listened to or read natural narrative stories. Using natural text and vector representations derived from natural language processing tools I will present how we can study language processing in the human brain across modalities, in different levels of temporal granularity, and across different languages.
The functional connectome across temporal scales
The view of human brain function has drastically shifted over the last decade, owing to the observation that the majority of brain activity is intrinsic rather than driven by external stimuli or cognitive demands. Specifically, all brain regions continuously communicate in spatiotemporally organized patterns that constitute the functional connectome, with consequences for cognition and behavior. In this talk, I will argue that another shift is underway, driven by new insights from synergistic interrogation of the functional connectome using different acquisition methods. The human functional connectome is typically investigated with functional magnetic resonance imaging (fMRI) that relies on the indirect hemodynamic signal, thereby emphasizing very slow connectivity across brain regions. Conversely, more recent methodological advances demonstrate that fast connectivity within the whole-brain connectome can be studied with real-time methods such as electroencephalography (EEG). Our findings show that combining fMRI with scalp or intracranial EEG in humans, especially when recorded concurrently, paints a rich picture of neural communication across the connectome. Specifically, the connectome comprises both fast, oscillation-based connectivity observable with EEG, as well as extremely slow processes best captured by fMRI. While the fast and slow processes share an important degree of spatial organization, these processes unfold in a temporally independent manner. Our observations suggest that fMRI and EEG may be envisaged as capturing distinct aspects of functional connectivity, rather than intermodal measurements of the same phenomenon. Infraslow fluctuation-based and rapid oscillation-based connectivity of various frequency bands constitute multiple dynamic trajectories through a shared state space of discrete connectome configurations. The multitude of flexible trajectories may concurrently enable functional connectivity across multiple independent sets of distributed brain regions.
How sleep contributes to visual perceptual learning
Sleep is crucial for the continuity and development of life. Sleep-related problems can alter brain function, and cause potentially severe psychological and behavioral consequences. However, the role of sleep in our mind and behavior is far from clear. In this talk, I will present our research on how sleep may play a role in visual perceptual learning (VPL) by using simultaneous magnetic resonance spectroscopy and polysomnography in human subjects. We measured the concentrations of neurotransmitters in the early visual areas during sleep and obtained the excitation/inhibition (E/I) ratio which represents the amount of plasticity in the visual system. We found that the E/I ratio significantly increased during NREM sleep while it decreased during REM sleep. The E/I ratio during NREM sleep was correlated with offline performance gains by sleep, while the E/I ratio during REM sleep was correlated with the amount of learning stabilization. These suggest that NREM sleep increases plasticity, while REM sleep decreases it to solidify once enhanced learning. NREM and REM sleep may play complementary roles, reflected by significantly different neurochemical processing, in VPL.
Brain chart for the human lifespan
Over the past few decades, neuroimaging has become a ubiquitous tool in basic research and clinical studies of the human brain. However, no reference standards currently exist to quantify individual differences in neuroimaging metrics over time, in contrast to growth charts for anthropometric traits such as height and weight. Here, we built an interactive resource to benchmark brain morphology, www.brainchart.io, derived from any current or future sample of magnetic resonance imaging (MRI) data. With the goal of basing these reference charts on the largest and most inclusive dataset available, we aggregated 123,984 MRI scans from 101,457 participants aged from 115 days post-conception through 100 postnatal years, across more than 100 primary research studies. Cerebrum tissue volumes and other global or regional MRI metrics were quantified by centile scores, relative to non-linear trajectories of brain structural changes, and rates of change, over the lifespan. Brain charts identified previously unreported neurodevelopmental milestones; showed high stability of individual centile scores over longitudinal assessments; and demonstrated robustness to technical and methodological differences between primary studies. Centile scores showed increased heritability compared to non-centiled MRI phenotypes, and provided a standardised measure of atypical brain structure that revealed patterns of neuroanatomical variation across neurological and psychiatric disorders. In sum, brain charts are an essential first step towards robust quantification of individual deviations from normative trajectories in multiple, commonly-used neuroimaging phenotypes. Our collaborative study proves the principle that brain charts are achievable on a global scale over the entire lifespan, and applicable to analysis of diverse developmental and clinical effects on human brain structure.
A transdiagnostic data-driven study of children’s behaviour and the functional connectome
Behavioural difficulties are seen as hallmarks of many neurodevelopmental conditions. Differences in functional brain organisation have been observed in these conditions, but little is known about how they are related to a child’s profile of behavioural difficulties. We investigated whether behavioural difficulties are associated with how the brain is functionally organised in an intentionally heterogeneous and transdiagnostic sample of 957 children aged 5-15. We used consensus community detection to derive data-driven profiles of behavioural difficulties and constructed functional connectomes from a subset of 238 children with resting-state functional Magnetic Resonance Imaging (fMRI) data. We identified three distinct profiles of behaviour that were characterised by principal difficulties with hot executive function, cool executive function, and learning. Global organisation of the functional connectome did not differ between the groups, but multivariate patterns of connectivity at the level of Intrinsic Connectivity Networks (ICNs), nodes, and hubs significantly predicted group membership in held-out data. Fronto-parietal connector hubs were under-connected in all groups relative to a comparison sample, and children with hot vs cool executive function difficulties were distinguished by connectivity in ICNs associated with cognitive control, emotion processing, and social cognition. This demonstrates both general and specific neurodevelopmental risk factors in the functional connectome. (https://www.medrxiv.org/content/10.1101/2021.09.15.21262637v1)
Metabolic and functional connectivity relate to distinct aspects of cognition
A major challenge of cognitive neuroscience is to understand how the brain as a network gives rise to our cognition. Simultaneous [18F]-fluorodeoxyglucose positron emission tomography functional magnetic resonance imaging (FDG-PET/fMRI) provides the opportunity to investigate brain connectivity not only via spatially distant, synchronous cerebrovascular hemodynamic responses (functional connectivity), but also glucose metabolism (metabolic connectivity). However, how these two modalities of brain connectivity differ in their relation to cognition is unknown. In this webinar, Dr Katharina Voigt will discuss recent findings demonstrating the advantage of simultaneous FDG-PET/fMRI in providing a more complete picture of the neural mechanisms underlying cognition, that calls for a combination of both modalities in future cognitive neuroscience. Dr Katharina Voigt is a Research Fellow within the Turner Institute for Brain and Mental Health, Monash University. Her research interests include systems neuroscience, simultaneous PET-MRI, and decision-making.
Behavioral and neurobiological mechanisms of social cooperation
Human society operates on large-scale cooperation and shared norms of fairness. However, individual differences in cooperation and incentives to free-riding on others’ cooperation make large-scale cooperation fragile and can lead to reduced social-welfare. Deciphering the neural codes representing potential rewards/costs for self and others is crucial for understanding social decision-making and cooperation. I will first talk about how we integrate computational modeling with functional magnetic resonance imaging to investigate the neural representation of social value and the modulation by oxytocin, a nine-amino acid neuropeptide, in participants evaluating monetary allocations to self and other (self-other allocations). Then I will introduce our recent studies examining the neurobiological mechanisms underlying intergroup decision-making using hyper-scanning, and share with you how we alter intergroup decisions using psychological manipulations and pharmacological challenge. Finally, I will share with you our on-going project that reveals how individual cooperation spreads through human social networks. Our results help to better understand the neurocomputational mechanism underlying interpersonal and intergroup decision-making.
Investigating visual recognition and the temporal lobes using electrophysiology and fast periodic visual stimulation
The ventral visual pathway extends from the occipital to the anterior temporal regions, and is specialized in giving meaning to objects and people that are perceived through vision. Numerous studies in functional magnetic resonance imaging have focused on the cerebral basis of visual recognition. However, this technique is susceptible to magnetic artefacts in ventral anterior temporal regions and it has led to an underestimation of the role of these regions within the ventral visual stream, especially with respect to face recognition and semantic representations. Moreover, there is an increasing need for implicit methods assessing these functions as explicit tasks lack specificity. In this talk, I will present three studies using fast periodic visual stimulation (FPVS) in combination with scalp and/or intracerebral EEG to overcome these limitations and provide high SNR in temporal regions. I will show that, beyond face recognition, FPVS can be extended to investigate semantic representations using a face-name association paradigm and a semantic categorisation paradigm with written words. These results shed new light on the role of temporal regions and demonstrate the high potential of the FPVS approach as a powerful electrophysiological tool to assess various cognitive functions in neurotypical and clinical populations.
Higher cognitive resources for efficient learning
A central issue in reinforcement learning (RL) is the ‘curse-of-dimensionality’, arising when the degrees-of-freedom are much larger than the number of training samples. In such circumstances, the learning process becomes too slow to be plausible. In the brain, higher cognitive functions (such as abstraction or metacognition) may be part of the solution by generating low dimensional representations on which RL can operate. In this talk I will discuss a series of studies in which we used functional magnetic resonance imaging (fMRI) and computational modeling to investigate the neuro-computational basis of efficient RL. We found that people can learn remarkably complex task structures non-consciously, but also that - intriguingly - metacognition appears tightly coupled to this learning ability. Furthermore, when people use an explicit (conscious) policy to select relevant information, learning is accelerated by abstractions. At the neural level, prefrontal cortex subregions are differentially involved in separate aspects of learning: dorsolateral prefrontal cortex pairs with metacognitive processes, while ventromedial prefrontal cortex with valuation and abstraction. I will discuss the implications of these findings, in particular new questions on the function of metacognition in adaptive behavior and the link with abstraction.
From 1D to 5D: Data-driven Discovery of Whole-brain Dynamic Connectivity in fMRI Data
The analysis of functional magnetic resonance imaging (fMRI) data can greatly benefit from flexible analytic approaches. In particular, the advent of data-driven approaches to identify whole-brain time-varying connectivity and activity has revealed a number of interesting relevant variation in the data which, when ignored, can provide misleading information. In this lecture I will provide a comparative introduction of a range of data-driven approaches to estimating time-varying connectivity. I will also present detailed examples where studies of both brain health and disorder have been advanced by approaches designed to capture and estimate time-varying information in resting fMRI data. I will review several exemplar data sets analyzed in different ways to demonstrate the complementarity as well as trade-offs of various modeling approaches to answer questions about brain function. Finally, I will review and provide examples of strategies for validating time-varying connectivity including simulations, multimodal imaging, and comparative prediction within clinical populations, among others. As part of the interactive aspect I will provide a hands-on guide to the dynamic functional network connectivity toolbox within the GIFT software, including an online didactic analytic decision tree to introduce the various concepts and decisions that need to be made when using such tools
From function to cognition: New spectroscopic tools for studying brain neurochemistry in-vivo
In this seminar, I will present new methods in magnetic resonance spectroscopy (MRS) we’ve been working on in the lab. The talk will be divided into two parts. In the first, I will talk about neurochemical changes we observe in glutamate and GABA during various paradigms, including simple motors tasks and reinforcement learning. In the second part, I’ll present a new approach to MRS that focuses on measuring the relaxation times (T1, T2) of metabolites, which reflect changes to specific cellular microenvironments. I will explain why these can be exciting markers for studying several in-vivo pathologies, and also present some preliminary data from a cohort of mild cognitive impairment (MCI) patients, showing changes that correlate to cognitive decline.
Magnetic Resonance Measures of Brain Blood Vessels, Metabolic Activity, and Pathology in Multiple Sclerosis
The normally functioning blood-brain barrier (BBB) regulates the transfer of material between blood and brain. BBB dysfunction has long been recognized in multiple sclerosis (MS), and there is considerable interest in quantifying functional aspects of brain blood vessels and their role in disease progression. Parenchymal water content and its association with volume regulation is important for proper brain function, and is one of the key roles of the BBB. There is convincing evidence that the astrocyte is critical in establishing and maintaining a functional BBB and providing metabolic support to neurons. Increasing evidence suggests that functional interactions between endothelia, pericytes, astrocytes, and neurons, collectively known as the neurovascular unit, contribute to brain water regulation, capillary blood volume and flow, BBB permeability, and are responsive to metabolic demands. Increasing evidence suggests altered metabolism in MS brain which may contribute to reduced neuro-repair and increased neurodegeneration. Metabolically relevant biomarkers may provide sensitive readouts of brain tissue at risk of degeneration, and magnetic resonance offers substantial promise in this regard. Dynamic contrast enhanced MRI combined with appropriate pharmacokinetic modeling allows quantification of distinct features of BBB including permeabilities to contrast agent and water, with rate constants that differ by six orders of magnitude. Mapping of these rate constants provides unique biological aspects of brain vasculature relevant to MS.
The pharmacology of consciousness
My research uses a range of methods to better understand how the brain’s natural chemicals control complex behaviours, thoughts and perceptions. I also have a particular fascination about the factors that determine the contents of an individual’s conscious experience. In this talk I will present work that sits at the intersection of these two research areas looking at the role of different neurotransmitter systems in driving changes in conscious state. Specifically, I will discuss a series of studies using ambiguous stimuli to explore the neuropharmacological processes that underly alternations in perceptual awareness. By comparing different methods and neurotransmitter systems including: serotonin (psychedelics), noradrenaline (pupillometry) and Glutamate/GABA (Magnetic Resonance Spectroscopy MRS) we can start to tease apart the distinct role that different neurotransmitter systems play in coordinating conscious experience across time.
A machine learning way to analyse white matter tractography streamlines / Application of artificial intelligence in correcting motion artifacts and reducing scan time in MRI
1. Embedding is all you need: A machine learning way to analyse white matter tractography streamlines - Dr Shenjun Zhong, Monash Biomedical Imaging Embedding white matter streamlines with various lengths into fixed-length latent vectors enables users to analyse them with general data mining techniques. However, finding a good embedding schema is still a challenging task as the existing methods based on spatial coordinates rely on manually engineered features, and/or labelled dataset. In this webinar, Dr Shenjun Zhong will discuss his novel deep learning model that identifies latent space and solves the problem of streamline clustering without needing labelled data. Dr Zhong is a Research Fellow and Informatics Officer at Monash Biomedical Imaging. His research interests are sequence modelling, reinforcement learning and federated learning in the general medical imaging domain. 2. Application of artificial intelligence in correcting motion artifacts and reducing scan time in MRI - Dr Kamlesh Pawar, Monash Biomedical imaging Magnetic Resonance Imaging (MRI) is a widely used imaging modality in clinics and research. Although MRI is useful it comes with an overhead of longer scan time compared to other medical imaging modalities. The longer scan times also make patients uncomfortable and even subtle movements during the scan may result in severe motion artifact in the images. In this seminar, Dr Kamlesh Pawar will discuss how artificial intelligence techniques can reduce scan time and correct motion artifacts. Dr Pawar is a Research Fellow at Monash Biomedical Imaging. His research interest includes deep learning, MR physics, MR image reconstruction and computer vision.
Markers of brain connectivity and sleep-dependent restoration: basic research and translation into clinical populations
The human brain is a heavily interconnected structure giving rise to complex functions. While brain functionality is mostly revealed during wakefulness, the sleeping brain might offer another view into physiological and pathological brain connectivity. Furthermore, there is a large body of evidence supporting that sleep mediates plastic changes in brain connectivity. Although brain plasticity depends on environmental input which is provided in the waking state, disconnection during sleep might be necessary for integrating new into existing information and at the same time restoring brain efficiency. In this talk, I will present structural, molecular, and electrophysiological markers of brain connectivity and sleep-dependent restoration that we have evaluated using Magnetic Resonance Imaging and electroencephalography in a healthy population. In a second step, I will show how we translated the gained findings into two clinical populations in which alterations in brain connectivity have been described, the neuropsychiatric disorder attention-deficit/hyperactivity disorder (ADHD) and the neurologic disorder thalamic ischemic stroke.
How to combine brain stimulation with neuroimaging: "Concurrent tES-fMRI
Transcranial electrical stimulation (tES) techniques, including transcranial alternating and direct current stimulation (tACS and tDCS), are non-invasive brain stimulation technologies increasingly used for modulation of targeted neural and cognitive processes. Integration of tES with human functional magnetic resonance imaging (fMRI) provides a novel avenue in human brain mapping for investigating the neural mechanisms underlying tES. Advances in the field of tES-fMRI can be hampered by the methodological variability between studies that confounds comparability/replicability. To address the technical/methodological details and to propose a new framework for future research, the scientific international network of tES-fMRI (INTF) was founded with two main aims: • To foster scientific exchange between researchers for sharing ideas, exchanging experiences, and publishing consensus articles; • To implement the joint studies through a continuing dialogue with the institutes across the globe. The network organized three international scientific webinars, in which considerable heterogeneities of technical/methodological aspects in studies combining tES with fMRI were discussed along with strategies to help to bridge respective knowledge gaps, and distributes newsletters that are sent regularly to the network members from the Twitter and LinkedIn accounts.
Mapping early brain network changes in neurodegenerative and cerebrovascular disorders: a longitudinal perspective
The spatial patterning of each neurodegenerative disease relates closely to a distinct structural and functional network in the human brain. This talk will mainly describe how brain network-sensitive neuroimaging methods such as resting-state fMRI and diffusion MRI can shed light on brain network dysfunctions associated with pathology and cognitive decline from preclinical to clinical dementia. I will first present our findings from two independent datasets on how amyloid and cerebrovascular pathology influence brain functional networks cross-sectionally and longitudinally in individuals with mild cognitive impairment and dementia. Evidence on longitudinal functional network organizational changes in healthy older adults and the influence of APOE genotype will be presented. In the second part, I will describe our work on how different pathology influences brain structural network and white matter microstructure. I will also touch on some new data on how brain network integrity contributes to behavior and disease progression using multivariate or machine learning approaches. These findings underscore the importance of studying selective brain network vulnerability instead of individual region and longitudinal design. Further developed with machine learning approaches, multimodal network-specific imaging signatures will help reveal disease mechanisms and facilitate early detection, prognosis and treatment search of neuropsychiatric disorders.
Schizophrenia and Substance Use Disorders: Cracking the Chicken-or-Egg Question
Although substance use disorders (SUDs) occur commonly in patients with schizophrenia and significantly worsen their clinical course, the neurobiological basis of SUDs in schizophrenia is not well understood. Therefore, there is a critical need to understand the mechanisms underlying SUDs in schizophrenia in order to identify potential targets for therapeutic intervention. Since drug use usually begins in adolescence, it is also important to understand the long-term effects of adolescent drug exposure on schizophrenia- and reward- related behaviors and circuitry. This talk will combine pharmacological, behavioral, electrophysiologic (local field potential recordings) and pre-clinical magnetic resonance imaging (resting-state functional connectivity and magnetic resonance spectroscopy) approaches to study these topics with an eye toward developing better treatment approaches.
Multimodal brain imaging to predict progression of Alzheimer’s disease
Cross-sectional and longitudinal multimodal brain imaging studies using positron emission tomography (PET) and magnetic resonance imaging (MRI) have provided detailed insight into the pathophysiological progression of Alzheimer’s disease. It starts at an asymptomatic stage with widespread gradual accumulation of beta-amyloid and spread of pathological tau deposits. Subsequently changes of functional connectivity and glucose metabolism associated with mild cognitive impairment and brain atrophy may develop. However, the rate of progression to a symptomatic stage and ultimately dementia varies considerably between individuals. Mathematical models have been developed to describe disease progression, which may be used to identify markers that determine the current stage and likely rate of progression. Both are very important to improve the efficacy of clinical trials. In this lecture, I will provide an overview on current research and future perspectives in this area.
Neuroimaging in human drug addiction: an eye towards intervention development
Drug addiction is a chronically relapsing disorder characterized by compulsive drug use despite catastrophic personal consequences (e.g., loss of family, job) and even when the substance is no longer perceived as pleasurable. In this talk, I will present results of human neuroimaging studies, utilizing a multimodal approach (neuropsychology, functional magnetic resonance imaging, event-related potentials recordings), to explore the neurobiology underlying the core psychological impairments in drug addiction (impulsivity, drive/motivation, insight/awareness) as associated with its clinical symptomatology (intoxication, craving, bingeing, withdrawal). The focus of this talk is on understanding the role of the dopaminergic mesocorticolimbic circuit, and especially the prefrontal cortex, in higher-order executive dysfunction (e.g., disadvantageous decision-making such as trading a car for a couple of cocaine hits) in drug addicted individuals. The theoretical model that guides the presented research is called iRISA (Impaired Response Inhibition and Salience Attribution), postulating that abnormalities in the orbitofrontal cortex and anterior cingulate cortex, as related to dopaminergic dysfunction, contribute to the core clinical symptoms in drug addiction. Specifically, our multi-modality program of research is guided by the underlying working hypothesis that drug addicted individuals disproportionately attribute reward value to their drug of choice at the expense of other potentially but no-longer-rewarding stimuli, with a concomitant decrease in the ability to inhibit maladaptive drug use. In this talk I will also explore whether treatment (as usual) and 6-month abstinence enhance recovery in these brain-behavior compromises in treatment seeking cocaine addicted individuals. Promising neuroimaging studies, which combine pharmacological (i.e., oral methylphenidate, or RitalinTM) and salient cognitive tasks or functional connectivity during resting-state, will be discussed as examples for using neuroimaging for empirically guiding the development of effective neurorehabilitation strategies (encompassing cognitive reappraisal and transcranial direct current stimulation) in drug addiction.
Brain activation patterns during memory processes measured with functional magnetic resonance imaging are associated with human serotonin-1A receptor in vivo
FENS Forum 2024
Longitudinal assessment of neurodegeneration in a mouse model of tauopathy using multiparametric magnetic resonance imaging
FENS Forum 2024
Reduction of inter-individual variance in functional magnetic resonance imaging improves the prediction of individual pain ratings
FENS Forum 2024
Volume of thalamic subregions across common behavioral and neurological disorders: A multi-site magnetic resonance imaging study
FENS Forum 2024
Brain Tumour Classification using EfficientnetB1 from Magnetic Resonance Imaging Data
Neuromatch 5