← Back

Magnetic Resonance Imaging

Topic spotlight
TopicWorld Wide

magnetic resonance imaging

Discover seminars, jobs, and research tagged with magnetic resonance imaging across World Wide.
28 curated items22 Seminars5 ePosters1 Position
Updated 2 days ago
28 items · magnetic resonance imaging
28 results
Position

Dr Axel Montagne

UK Dementia Research Institute, Centre for Clinical Brain Sciences, The University of Edinburgh
Edinburgh, Scotland
Dec 5, 2025

Description The Montagne lab combines molecular approaches (e.g., scRNA-Seq) with rodent noninvasive imaging, particularly magnetic resonance imaging (MRI) and two-photon microscopy, to study the causes and effects of blood-brain barrier (BBB) dysfunction in the context of neurodegenerative disease. BBB dysfunction is a major cause of inflammatory and bioenergetic deregulation in the brain, but the interplay between pericytes and endothelial cells that causes this collapse is not fully delineated. The Montagne lab is now focusing on probing BBB function and pericyte-endothelial crosstalk, especially the consequences of pericyte dysfunction on endothelial cells and the BBB, plus reciprocal signaling by activated endothelial cells. The post-holder will contribute to the development of this program by performing high-quality, original research, and producing material for publication and dissemination. Main Responsibilities: Design, perform, and analyse experiments. Master new techniques when necessary = 70 percent. Maintain accurate and up-to-date records of experimental and analytical work. Regularly summarise progress in high-quality figures. Regular reporting of progress to the PI/other members of the research team is expected. Presentation of research findings at national and international level = 10 percent. Keep up to date with related published work. Promote scientific discussion in the lab. Actively participate in the development of the lines of research and the intellectual and technical growth of the lab = 8% Take a lead role in writing up data for publication. Contribute to the dissemination and publication of own/research team’s research findings = 5 percent. To provide guidance and supervision for student projects and/or instruction of students in the use of equipment/demonstration of techniques = 4 percent. Help with the preparation of research proposals and applications to external funding bodies = 3 percent. More information and application here: https://elxw.fa.em3.oraclecloud.com/hcmUI/CandidateExperience/en/sites/CX_1001/job/1757

SeminarNeuroscience

Trends in NeuroAI - Meta's MEG-to-image reconstruction

Paul Scotti
Dec 6, 2023

Trends in NeuroAI is a reading group hosted by the MedARC Neuroimaging & AI lab (https://medarc.ai/fmri). This will be an informal journal club presentation, we do not have an author of the paper joining us. Title: Brain decoding: toward real-time reconstruction of visual perception Abstract: In the past five years, the use of generative and foundational AI systems has greatly improved the decoding of brain activity. Visual perception, in particular, can now be decoded from functional Magnetic Resonance Imaging (fMRI) with remarkable fidelity. This neuroimaging technique, however, suffers from a limited temporal resolution (≈0.5 Hz) and thus fundamentally constrains its real-time usage. Here, we propose an alternative approach based on magnetoencephalography (MEG), a neuroimaging device capable of measuring brain activity with high temporal resolution (≈5,000 Hz). For this, we develop an MEG decoding model trained with both contrastive and regression objectives and consisting of three modules: i) pretrained embeddings obtained from the image, ii) an MEG module trained end-to-end and iii) a pretrained image generator. Our results are threefold: Firstly, our MEG decoder shows a 7X improvement of image-retrieval over classic linear decoders. Second, late brain responses to images are best decoded with DINOv2, a recent foundational image model. Third, image retrievals and generations both suggest that MEG signals primarily contain high-level visual features, whereas the same approach applied to 7T fMRI also recovers low-level features. Overall, these results provide an important step towards the decoding - in real time - of the visual processes continuously unfolding within the human brain. Speaker: Dr. Paul Scotti (Stability AI, MedARC) Paper link: https://arxiv.org/abs/2310.19812

SeminarNeuroscience

Trends in NeuroAI - SwiFT: Swin 4D fMRI Transformer

Junbeom Kwon
Nov 20, 2023

Trends in NeuroAI is a reading group hosted by the MedARC Neuroimaging & AI lab (https://medarc.ai/fmri). Title: SwiFT: Swin 4D fMRI Transformer Abstract: Modeling spatiotemporal brain dynamics from high-dimensional data, such as functional Magnetic Resonance Imaging (fMRI), is a formidable task in neuroscience. Existing approaches for fMRI analysis utilize hand-crafted features, but the process of feature extraction risks losing essential information in fMRI scans. To address this challenge, we present SwiFT (Swin 4D fMRI Transformer), a Swin Transformer architecture that can learn brain dynamics directly from fMRI volumes in a memory and computation-efficient manner. SwiFT achieves this by implementing a 4D window multi-head self-attention mechanism and absolute positional embeddings. We evaluate SwiFT using multiple large-scale resting-state fMRI datasets, including the Human Connectome Project (HCP), Adolescent Brain Cognitive Development (ABCD), and UK Biobank (UKB) datasets, to predict sex, age, and cognitive intelligence. Our experimental outcomes reveal that SwiFT consistently outperforms recent state-of-the-art models. Furthermore, by leveraging its end-to-end learning capability, we show that contrastive loss-based self-supervised pre-training of SwiFT can enhance performance on downstream tasks. Additionally, we employ an explainable AI method to identify the brain regions associated with sex classification. To our knowledge, SwiFT is the first Swin Transformer architecture to process dimensional spatiotemporal brain functional data in an end-to-end fashion. Our work holds substantial potential in facilitating scalable learning of functional brain imaging in neuroscience research by reducing the hurdles associated with applying Transformer models to high-dimensional fMRI. Speaker: Junbeom Kwon is a research associate working in Prof. Jiook Cha’s lab at Seoul National University. Paper link: https://arxiv.org/abs/2307.05916

SeminarNeuroscienceRecording

Interacting spiral wave patterns underlie complex brain dynamics and are related to cognitive processing

Pulin Gong
The University of Sydney
Aug 10, 2023

The large-scale activity of the human brain exhibits rich and complex patterns, but the spatiotemporal dynamics of these patterns and their functional roles in cognition remain unclear. Here by characterizing moment-by-moment fluctuations of human cortical functional magnetic resonance imaging signals, we show that spiral-like, rotational wave patterns (brain spirals) are widespread during both resting and cognitive task states. These brain spirals propagate across the cortex while rotating around their phase singularity centres, giving rise to spatiotemporal activity dynamics with non-stationary features. The properties of these brain spirals, such as their rotational directions and locations, are task relevant and can be used to classify different cognitive tasks. We also demonstrate that multiple, interacting brain spirals are involved in coordinating the correlated activations and de-activations of distributed functional regions; this mechanism enables flexible reconfiguration of task-driven activity flow between bottom-up and top-down directions during cognitive processing. Our findings suggest that brain spirals organize complex spatiotemporal dynamics of the human brain and have functional correlates to cognitive processing.

SeminarNeuroscience

In vivo direct imaging of neuronal activity at high temporospatial resolution

Jang-Yeon Park
Sungkyunkwan University, Suwon, Korea
Jun 27, 2023

Advanced noninvasive neuroimaging methods provide valuable information on the brain function, but they have obvious pros and cons in terms of temporal and spatial resolution. Functional magnetic resonance imaging (fMRI) using blood-oxygenation-level-dependent (BOLD) effect provides good spatial resolution in the order of millimeters, but has a poor temporal resolution in the order of seconds due to slow hemodynamic responses to neuronal activation, providing indirect information on neuronal activity. In contrast, electroencephalography (EEG) and magnetoencephalography (MEG) provide excellent temporal resolution in the millisecond range, but spatial information is limited to centimeter scales. Therefore, there has been a longstanding demand for noninvasive brain imaging methods capable of detecting neuronal activity at both high temporal and spatial resolution. In this talk, I will introduce a novel approach that enables Direct Imaging of Neuronal Activity (DIANA) using MRI that can dynamically image neuronal spiking activity in milliseconds precision, achieved by data acquisition scheme of rapid 2D line scan synchronized with periodically applied functional stimuli. DIANA was demonstrated through in vivo mouse brain imaging on a 9.4T animal scanner during electrical whisker-pad stimulation. DIANA with milliseconds temporal resolution had high correlations with neuronal spike activities, which could also be applied in capturing the sequential propagation of neuronal activity along the thalamocortical pathway of brain networks. In terms of the contrast mechanism, DIANA was almost unaffected by hemodynamic responses, but was subject to changes in membrane potential-associated tissue relaxation times such as T2 relaxation time. DIANA is expected to break new ground in brain science by providing an in-depth understanding of the hierarchical functional organization of the brain, including the spatiotemporal dynamics of neural networks.

SeminarNeuroscienceRecording

A parsimonious description of global functional brain organization in three spatiotemporal patterns

Taylor Bolt
Emory University
Sep 21, 2022

Resting-state functional magnetic resonance imaging (MRI) has yielded seemingly disparate insights into large-scale organization of the human brain. The brain’s large-scale organization can be divided into two broad categories: zero-lag representations of functional connectivity structure and time-lag representations of traveling wave or propagation structure. In this study, we sought to unify observed phenomena across these two categories in the form of three low-frequency spatiotemporal patterns composed of a mixture of standing and traveling wave dynamics. We showed that a range of empirical phenomena, including functional connectivity gradients, the task-positive/task-negative anti-correlation pattern, the global signal, time-lag propagation patterns, the quasiperiodic pattern and the functional connectome network structure, are manifestations of these three spatiotemporal patterns. These patterns account for much of the global spatial structure that underlies functional connectivity analyses and unifies phenomena in resting-state functional MRI previously thought distinct.

SeminarNeuroscience

The glymphatic system in motor neurone disease

David Wright
Monash University
Jul 5, 2022

Neurodegenerative diseases are chronic and inexorable conditions characterised by the presence of insoluble aggregates of abnormally ubiquinated and phosphorylated proteins. Recent evidence also suggests that protein misfolding can propagate throughout the body in a prion-like fashion via the interstitial or cerebrospinal fluids (CSF). As protein aggregation occurs well before the onset of brain damage and symptoms, new biomarkers sensitive to early pathology, together with therapeutic strategies that include eliminating seed proteins and blocking cell-to-cell spread, are of vital importance. The glymphatic system, which facilitates the continuous exchange of CSF and interstitial fluid to clear the brain of waste, presents as a potential biomarker of disease severity, therapeutic target, and drug delivery system. In this webinar, Associate Professor David Wright from the Department of Neuroscience, Monash University, will outline recent advances in using MRI to investigate the glymphatic system. He will also present some of his lab’s recent work investigating glymphatic clearance in preclinical models of motor neurone disease. Associate Professor David Wright is an NHMRC Emerging Leadership Fellow and the Director of Preclinical Imaging in the Department of Neuroscience, Monash University and the Alfred Research Alliance, Alfred Health. His research encompasses the development, application and analysis of advanced magnetic resonance imaging techniques for the study of disease, with a particular emphasis on neurodegenerative disorders. Although less than three years post PhD, he has published over 60 peer-reviewed journal articles in leading neuroscience journals such as Nature Medicine, Brain, and Cerebral Cortex.

SeminarNeuroscience

The functional connectome across temporal scales

Sepideh Sadaghiani
Assistant Professor, University of Illinois, USA
Mar 29, 2022

The view of human brain function has drastically shifted over the last decade, owing to the observation that the majority of brain activity is intrinsic rather than driven by external stimuli or cognitive demands. Specifically, all brain regions continuously communicate in spatiotemporally organized patterns that constitute the functional connectome, with consequences for cognition and behavior. In this talk, I will argue that another shift is underway, driven by new insights from synergistic interrogation of the functional connectome using different acquisition methods. The human functional connectome is typically investigated with functional magnetic resonance imaging (fMRI) that relies on the indirect hemodynamic signal, thereby emphasizing very slow connectivity across brain regions. Conversely, more recent methodological advances demonstrate that fast connectivity within the whole-brain connectome can be studied with real-time methods such as electroencephalography (EEG). Our findings show that combining fMRI with scalp or intracranial EEG in humans, especially when recorded concurrently, paints a rich picture of neural communication across the connectome. Specifically, the connectome comprises both fast, oscillation-based connectivity observable with EEG, as well as extremely slow processes best captured by fMRI. While the fast and slow processes share an important degree of spatial organization, these processes unfold in a temporally independent manner. Our observations suggest that fMRI and EEG may be envisaged as capturing distinct aspects of functional connectivity, rather than intermodal measurements of the same phenomenon. Infraslow fluctuation-based and rapid oscillation-based connectivity of various frequency bands constitute multiple dynamic trajectories through a shared state space of discrete connectome configurations. The multitude of flexible trajectories may concurrently enable functional connectivity across multiple independent sets of distributed brain regions.

SeminarNeuroscience

Brain chart for the human lifespan

Richard Bethlehem
Director of Neuroimaging, Autism Research Centre, University of Cambridge, United Kingdom
Jan 18, 2022

Over the past few decades, neuroimaging has become a ubiquitous tool in basic research and clinical studies of the human brain. However, no reference standards currently exist to quantify individual differences in neuroimaging metrics over time, in contrast to growth charts for anthropometric traits such as height and weight. Here, we built an interactive resource to benchmark brain morphology, www.brainchart.io, derived from any current or future sample of magnetic resonance imaging (MRI) data. With the goal of basing these reference charts on the largest and most inclusive dataset available, we aggregated 123,984 MRI scans from 101,457 participants aged from 115 days post-conception through 100 postnatal years, across more than 100 primary research studies. Cerebrum tissue volumes and other global or regional MRI metrics were quantified by centile scores, relative to non-linear trajectories of brain structural changes, and rates of change, over the lifespan. Brain charts identified previously unreported neurodevelopmental milestones; showed high stability of individual centile scores over longitudinal assessments; and demonstrated robustness to technical and methodological differences between primary studies. Centile scores showed increased heritability compared to non-centiled MRI phenotypes, and provided a standardised measure of atypical brain structure that revealed patterns of neuroanatomical variation across neurological and psychiatric disorders. In sum, brain charts are an essential first step towards robust quantification of individual deviations from normative trajectories in multiple, commonly-used neuroimaging phenotypes. Our collaborative study proves the principle that brain charts are achievable on a global scale over the entire lifespan, and applicable to analysis of diverse developmental and clinical effects on human brain structure.

SeminarNeuroscience

A transdiagnostic data-driven study of children’s behaviour and the functional connectome

Jonathan Jones
Universiy of Cambridge, MRC CBU
Nov 23, 2021

Behavioural difficulties are seen as hallmarks of many neurodevelopmental conditions. Differences in functional brain organisation have been observed in these conditions, but little is known about how they are related to a child’s profile of behavioural difficulties. We investigated whether behavioural difficulties are associated with how the brain is functionally organised in an intentionally heterogeneous and transdiagnostic sample of 957 children aged 5-15. We used consensus community detection to derive data-driven profiles of behavioural difficulties and constructed functional connectomes from a subset of 238 children with resting-state functional Magnetic Resonance Imaging (fMRI) data. We identified three distinct profiles of behaviour that were characterised by principal difficulties with hot executive function, cool executive function, and learning. Global organisation of the functional connectome did not differ between the groups, but multivariate patterns of connectivity at the level of Intrinsic Connectivity Networks (ICNs), nodes, and hubs significantly predicted group membership in held-out data. Fronto-parietal connector hubs were under-connected in all groups relative to a comparison sample, and children with hot vs cool executive function difficulties were distinguished by connectivity in ICNs associated with cognitive control, emotion processing, and social cognition. This demonstrates both general and specific neurodevelopmental risk factors in the functional connectome. (https://www.medrxiv.org/content/10.1101/2021.09.15.21262637v1)

SeminarNeuroscience

Metabolic and functional connectivity relate to distinct aspects of cognition

Katharina Voigt
Monash University
Oct 13, 2021

A major challenge of cognitive neuroscience is to understand how the brain as a network gives rise to our cognition. Simultaneous [18F]-fluorodeoxyglucose positron emission tomography functional magnetic resonance imaging (FDG-PET/fMRI) provides the opportunity to investigate brain connectivity not only via spatially distant, synchronous cerebrovascular hemodynamic responses (functional connectivity), but also glucose metabolism (metabolic connectivity). However, how these two modalities of brain connectivity differ in their relation to cognition is unknown. In this webinar, Dr Katharina Voigt will discuss recent findings demonstrating the advantage of simultaneous FDG-PET/fMRI in providing a more complete picture of the neural mechanisms underlying cognition, that calls for a combination of both modalities in future cognitive neuroscience. Dr Katharina Voigt is a Research Fellow within the Turner Institute for Brain and Mental Health, Monash University. Her research interests include systems neuroscience, simultaneous PET-MRI, and decision-making.

SeminarNeuroscience

Behavioral and neurobiological mechanisms of social cooperation

Yina Ma
Beijing Normal University
Jun 29, 2021

Human society operates on large-scale cooperation and shared norms of fairness. However, individual differences in cooperation and incentives to free-riding on others’ cooperation make large-scale cooperation fragile and can lead to reduced social-welfare. Deciphering the neural codes representing potential rewards/costs for self and others is crucial for understanding social decision-making and cooperation. I will first talk about how we integrate computational modeling with functional magnetic resonance imaging to investigate the neural representation of social value and the modulation by oxytocin, a nine-amino acid neuropeptide, in participants evaluating monetary allocations to self and other (self-other allocations). Then I will introduce our recent studies examining the neurobiological mechanisms underlying intergroup decision-making using hyper-scanning, and share with you how we alter intergroup decisions using psychological manipulations and pharmacological challenge. Finally, I will share with you our on-going project that reveals how individual cooperation spreads through human social networks. Our results help to better understand the neurocomputational mechanism underlying interpersonal and intergroup decision-making.

SeminarPsychology

Investigating visual recognition and the temporal lobes using electrophysiology and fast periodic visual stimulation

Angelique Volfart
University of Louvain
Jun 23, 2021

The ventral visual pathway extends from the occipital to the anterior temporal regions, and is specialized in giving meaning to objects and people that are perceived through vision. Numerous studies in functional magnetic resonance imaging have focused on the cerebral basis of visual recognition. However, this technique is susceptible to magnetic artefacts in ventral anterior temporal regions and it has led to an underestimation of the role of these regions within the ventral visual stream, especially with respect to face recognition and semantic representations. Moreover, there is an increasing need for implicit methods assessing these functions as explicit tasks lack specificity. In this talk, I will present three studies using fast periodic visual stimulation (FPVS) in combination with scalp and/or intracerebral EEG to overcome these limitations and provide high SNR in temporal regions. I will show that, beyond face recognition, FPVS can be extended to investigate semantic representations using a face-name association paradigm and a semantic categorisation paradigm with written words. These results shed new light on the role of temporal regions and demonstrate the high potential of the FPVS approach as a powerful electrophysiological tool to assess various cognitive functions in neurotypical and clinical populations.

SeminarNeuroscienceRecording

Higher cognitive resources for efficient learning

Aurelio Cortese
ATR
Jun 17, 2021

A central issue in reinforcement learning (RL) is the ‘curse-of-dimensionality’, arising when the degrees-of-freedom are much larger than the number of training samples. In such circumstances, the learning process becomes too slow to be plausible. In the brain, higher cognitive functions (such as abstraction or metacognition) may be part of the solution by generating low dimensional representations on which RL can operate. In this talk I will discuss a series of studies in which we used functional magnetic resonance imaging (fMRI) and computational modeling to investigate the neuro-computational basis of efficient RL. We found that people can learn remarkably complex task structures non-consciously, but also that - intriguingly - metacognition appears tightly coupled to this learning ability. Furthermore, when people use an explicit (conscious) policy to select relevant information, learning is accelerated by abstractions. At the neural level, prefrontal cortex subregions are differentially involved in separate aspects of learning: dorsolateral prefrontal cortex pairs with metacognitive processes, while ventromedial prefrontal cortex with valuation and abstraction. I will discuss the implications of these findings, in particular new questions on the function of metacognition in adaptive behavior and the link with abstraction.

SeminarNeuroscience

From 1D to 5D: Data-driven Discovery of Whole-brain Dynamic Connectivity in fMRI Data

Vince Calhoun
Founding Director, Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State, Georgia Tech, Emory, Atlanta, GA
May 19, 2021

The analysis of functional magnetic resonance imaging (fMRI) data can greatly benefit from flexible analytic approaches. In particular, the advent of data-driven approaches to identify whole-brain time-varying connectivity and activity has revealed a number of interesting relevant variation in the data which, when ignored, can provide misleading information. In this lecture I will provide a comparative introduction of a range of data-driven approaches to estimating time-varying connectivity. I will also present detailed examples where studies of both brain health and disorder have been advanced by approaches designed to capture and estimate time-varying information in resting fMRI data. I will review several exemplar data sets analyzed in different ways to demonstrate the complementarity as well as trade-offs of various modeling approaches to answer questions about brain function. Finally, I will review and provide examples of strategies for validating time-varying connectivity including simulations, multimodal imaging, and comparative prediction within clinical populations, among others. As part of the interactive aspect I will provide a hands-on guide to the dynamic functional network connectivity toolbox within the GIFT software, including an online didactic analytic decision tree to introduce the various concepts and decisions that need to be made when using such tools

SeminarNeuroscience

A machine learning way to analyse white matter tractography streamlines / Application of artificial intelligence in correcting motion artifacts and reducing scan time in MRI

Dr Shenjun Zhong and Dr Kamlesh Pawar
Monash Biomedical Imaging
Mar 10, 2021

1. Embedding is all you need: A machine learning way to analyse white matter tractography streamlines - Dr Shenjun Zhong, Monash Biomedical Imaging Embedding white matter streamlines with various lengths into fixed-length latent vectors enables users to analyse them with general data mining techniques. However, finding a good embedding schema is still a challenging task as the existing methods based on spatial coordinates rely on manually engineered features, and/or labelled dataset. In this webinar, Dr Shenjun Zhong will discuss his novel deep learning model that identifies latent space and solves the problem of streamline clustering without needing labelled data. Dr Zhong is a Research Fellow and Informatics Officer at Monash Biomedical Imaging. His research interests are sequence modelling, reinforcement learning and federated learning in the general medical imaging domain. 2. Application of artificial intelligence in correcting motion artifacts and reducing scan time in MRI - Dr Kamlesh Pawar, Monash Biomedical imaging Magnetic Resonance Imaging (MRI) is a widely used imaging modality in clinics and research. Although MRI is useful it comes with an overhead of longer scan time compared to other medical imaging modalities. The longer scan times also make patients uncomfortable and even subtle movements during the scan may result in severe motion artifact in the images. In this seminar, Dr Kamlesh Pawar will discuss how artificial intelligence techniques can reduce scan time and correct motion artifacts. Dr Pawar is a Research Fellow at Monash Biomedical Imaging. His research interest includes deep learning, MR physics, MR image reconstruction and computer vision.

SeminarNeuroscience

How to combine brain stimulation with neuroimaging: "Concurrent tES-fMRI

Charlotte Stag, Lucia Li, Axel Thielscher, Zeinab Esmaeilpour, Danny Wang, Michael Nitsche, Til Ole Bergmann, ...
University of Oxford, University of Imperial College London, ...
Feb 3, 2021

Transcranial electrical stimulation (tES) techniques, including transcranial alternating and direct current stimulation (tACS and tDCS), are non-invasive brain stimulation technologies increasingly used for modulation of targeted neural and cognitive processes. Integration of tES with human functional magnetic resonance imaging (fMRI) provides a novel avenue in human brain mapping for investigating the neural mechanisms underlying tES. Advances in the field of tES-fMRI can be hampered by the methodological variability between studies that confounds comparability/replicability. To address the technical/methodological details and to propose a new framework for future research, the scientific international network of tES-fMRI (INTF) was founded with two main aims: • To foster scientific exchange between researchers for sharing ideas, exchanging experiences, and publishing consensus articles; • To implement the joint studies through a continuing dialogue with the institutes across the globe. The network organized three international scientific webinars, in which considerable heterogeneities of technical/methodological aspects in studies combining tES with fMRI were discussed along with strategies to help to bridge respective knowledge gaps, and distributes newsletters that are sent regularly to the network members from the Twitter and LinkedIn accounts.

SeminarNeuroscience

Multimodal brain imaging to predict progression of Alzheimer’s disease

Karl Herholz
University of Manchester, Division of Neuroscience and Experimental Psychology
Dec 6, 2020

Cross-sectional and longitudinal multimodal brain imaging studies using positron emission tomography (PET) and magnetic resonance imaging (MRI) have provided detailed insight into the pathophysiological progression of Alzheimer’s disease. It starts at an asymptomatic stage with widespread gradual accumulation of beta-amyloid and spread of pathological tau deposits. Subsequently changes of functional connectivity and glucose metabolism associated with mild cognitive impairment and brain atrophy may develop. However, the rate of progression to a symptomatic stage and ultimately dementia varies considerably between individuals. Mathematical models have been developed to describe disease progression, which may be used to identify markers that determine the current stage and likely rate of progression. Both are very important to improve the efficacy of clinical trials. In this lecture, I will provide an overview on current research and future perspectives in this area.

SeminarNeuroscienceRecording

Neuroimaging in human drug addiction: an eye towards intervention development

Rita Goldstein
Mount Sinai
Sep 1, 2020

Drug addiction is a chronically relapsing disorder characterized by compulsive drug use despite catastrophic personal consequences (e.g., loss of family, job) and even when the substance is no longer perceived as pleasurable. In this talk, I will present results of human neuroimaging studies, utilizing a multimodal approach (neuropsychology, functional magnetic resonance imaging, event-related potentials recordings), to explore the neurobiology underlying the core psychological impairments in drug addiction (impulsivity, drive/motivation, insight/awareness) as associated with its clinical symptomatology (intoxication, craving, bingeing, withdrawal). The focus of this talk is on understanding the role of the dopaminergic mesocorticolimbic circuit, and especially the prefrontal cortex, in higher-order executive dysfunction (e.g., disadvantageous decision-making such as trading a car for a couple of cocaine hits) in drug addicted individuals. The theoretical model that guides the presented research is called iRISA (Impaired Response Inhibition and Salience Attribution), postulating that abnormalities in the orbitofrontal cortex and anterior cingulate cortex, as related to dopaminergic dysfunction, contribute to the core clinical symptoms in drug addiction. Specifically, our multi-modality program of research is guided by the underlying working hypothesis that drug addicted individuals disproportionately attribute reward value to their drug of choice at the expense of other potentially but no-longer-rewarding stimuli, with a concomitant decrease in the ability to inhibit maladaptive drug use. In this talk I will also explore whether treatment (as usual) and 6-month abstinence enhance recovery in these brain-behavior compromises in treatment seeking cocaine addicted individuals. Promising neuroimaging studies, which combine pharmacological (i.e., oral methylphenidate, or RitalinTM) and salient cognitive tasks or functional connectivity during resting-state, will be discussed as examples for using neuroimaging for empirically guiding the development of effective neurorehabilitation strategies (encompassing cognitive reappraisal and transcranial direct current stimulation) in drug addiction.

ePoster

Brain activation patterns during memory processes measured with functional magnetic resonance imaging are associated with human serotonin-1A receptor in vivo

Matej Murgaš, Pavle Mićić, Christian Milz, Andreas Hahn, Rupert Lanzenberger

FENS Forum 2024

ePoster

Longitudinal assessment of neurodegeneration in a mouse model of tauopathy using multiparametric magnetic resonance imaging

Annacarla Martucci, Franca Orsini, Edoardo Micotti, Rosaria Pascente, Gianluigi Forloni, Luana Fioriti

FENS Forum 2024

ePoster

Reduction of inter-individual variance in functional magnetic resonance imaging improves the prediction of individual pain ratings

Ole Goltermann, Christian Büchel

FENS Forum 2024

ePoster

Volume of thalamic subregions across common behavioral and neurological disorders: A multi-site magnetic resonance imaging study

Veronica Mäki-Marttunen, Tobias Kaufman, Lars Westlye, Ole Andreassen, Gro Nygaard, Hanne Harbo, Einar Høgestøl, Elisabeth Gulowsen-Celius, Carl Sellgren Majkowitz, Simon Cervenka, Sophie Erhardt, Luigi Maglanoc, Rune Jonassen, Eva Hilland, Nils Landrø, Annette Conzelmann, Paul Pauli, Georg Ziegler, Klaus-Peter Lesch, Andreas Reif, Katrin Zierhut, Emanuel Schwarz, Erik Jönsson, Ingrid Agartz, Erlend Bøen, Birgitte Boye, Stefan Borgwardt, Andre Schmidt, Stener Nerland, Jaroslav Rokicki, Kjetil Jørgensen, Torbjørn Elvsåshagen

FENS Forum 2024

ePoster

Brain Tumour Classification using EfficientnetB1 from Magnetic Resonance Imaging Data

Bhavya Ratan Maroo

Neuromatch 5