Mechanosensation
mechanosensation
Self-perception: mechanosensation and beyond
Brain-organ communications play a crucial role in maintaining the body's physiological and psychological homeostasis, and are controlled by complex neural and hormonal systems, including the internal mechanosensory organs. However, the progress has been slow due to technical hurdles: the sensory neurons are deeply buried inside the body and are not readily accessible for direct observation, the projection patterns from different organs or body parts are complex rather than converging into dedicate brain regions, the coding principle cannot be directly adapted from that learned from conventional sensory pathways. Our lab apply the pipeline of "biophysics of receptors-cell biology of neurons-functionality of neural circuits-animal behaviors" to explore the molecular and neural mechanisms of self-perception. In the lab, we mainly focus on the following three questions: 1, The molecular and cellular basis for proprioception and interoception. 2, The circuit mechanisms of sensory coding and integration of internal and external information. 3, The function of interoception in regulating behavior homeostasis.
Under Pressure: the role of PIEZO ion channels in interoception
PIEZO ion channels detect force in cellular membranes. They are expressed in a wide variety of mammalian tissues, including the vasculature, lymphatic system, and the nervous system. We have found that PIEZO2 in sensory neurons is required for the mechanical senses of touch and proprioception, but our understanding of internal organ sensing, interoception, is far behind. I will describe our findings on the role of PIEZO ion channels in the lesser-known interoceptive senses in multiple organ systems.
An evolutionarily conserved hindwing circuit mediates Drosophila flight control
My research at the interface of neurobiology, biomechanics, and behavior seeks to understand how the timing precision of sensory input structures locomotor output. My lab studies the flight behavior of the fruit fly, Drosophila melanogaster, combining powerful genetic tools available for labeling and manipulating neural circuits with cutting-edge imaging in awake, behaving animals. This work has the potential to fundamentally reshape understanding of the evolution of insect flight, as well as highlight the tremendous importance of timing in the context of locomotion. Timing is crucial to the nervous system. The ability to rapidly detect and process subtle disturbances in the environment determines whether an animal can attain its next meal or successfully navigate complex, unpredictable terrain. While previous work on various animals has made tremendous strides uncovering the specialized neural circuits used to resolve timing differences with sub-microsecond resolution, it has focused on the detection of timing differences in sensory systems. Understanding of how the timing of motor output is structured by precise sensory input remains poor. My research focuses on an organ unique to fruit flies, called the haltere, that serves as a bridge for detecting and acting on subtle timing differences, helping flies execute rapid maneuvers. Understanding how this relatively simple insect canperform such impressive aerial feats demands an integrative approach that combines physics, muscle mechanics, neuroscience, and behavior. This unique, powerful approach will reveal the general principles that govern sensorimotor processing.
Integrative modeling of Paramecium, a swimming neuron
Paramecium is a unicellular organism that swims in fresh water using cilia. When it is stimulated (mechanically, chemically, optically, thermally, etc), it often swims backward then turns and swims forward again: this is called the avoiding reaction. This reaction is triggered by a calcium-based action potential. For this reason, it enjoyed a period of glory in the 1970s as a model organism for neuroscience. I will describe the behavior and electrophysiology of this “swimming neuron”, then I will present our ongoing attempts at developing an integrative quantitative model of Paramecium.
Substrate mechanosensation in locomotion of C. elegans
FENS Forum 2024