Memory Processing
memory processing
Co-tuned, balanced excitation and inhibition in olfactory memory networks
Odor memories are exceptionally robust and essential for the survival of many species. In rodents, the olfactory cortex shows features of an autoassociative memory network and plays a key role in the retrieval of olfactory memories (Meissner-Bernard et al., 2019). Interestingly, the telencephalic area Dp, the zebrafish homolog of olfactory cortex, transiently enters a state of precise balance during the presentation of an odor (Rupprecht and Friedrich, 2018). This state is characterized by large synaptic conductances (relative to the resting conductance) and by co-tuning of excitation and inhibition in odor space and in time at the level of individual neurons. Our aim is to understand how this precise synaptic balance affects memory function. For this purpose, we build a simplified, yet biologically plausible spiking neural network model of Dp using experimental observations as constraints: besides precise balance, key features of Dp dynamics include low firing rates, odor-specific population activity and a dominance of recurrent inputs from Dp neurons relative to afferent inputs from neurons in the olfactory bulb. To achieve co-tuning of excitation and inhibition, we introduce structured connectivity by increasing connection probabilities and/or strength among ensembles of excitatory and inhibitory neurons. These ensembles are therefore structural memories of activity patterns representing specific odors. They form functional inhibitory-stabilized subnetworks, as identified by the “paradoxical effect” signature (Tsodyks et al., 1997): inhibition of inhibitory “memory” neurons leads to an increase of their activity. We investigate the benefits of co-tuning for olfactory and memory processing, by comparing inhibitory-stabilized networks with and without co-tuning. We find that co-tuned excitation and inhibition improves robustness to noise, pattern completion and pattern separation. In other words, retrieval of stored information from partial or degraded sensory inputs is enhanced, which is relevant in light of the instability of the olfactory environment. Furthermore, in co-tuned networks, odor-evoked activation of stored patterns does not persist after removal of the stimulus and may therefore subserve fast pattern classification. These findings provide valuable insights into the computations performed by the olfactory cortex, and into general effects of balanced state dynamics in associative memory networks.
Spatiotemporal patterns of neocortical activity around hippocampal sharp-wave ripples
Neocortical-hippocampal interactions during off-line periods such as slow-wave sleep are implicated in memory processing. In particular, recent memory traces are replayed in hippocampus during some sharp-wave ripple (SWR) events, and these replay events are positively correlated with neocortical memory trace reactivation. A prevalent model is that SWR arise ‘spontaneously’ in CA3 and propagate recent memory ‘indices’ outward to the neocortex to enable memory consolidation there; however, the spatiotemporal distribution of neocortical activation relative to SWR is incompletely understood. We used wide-field optical imaging to study voltage and glutamate release transients in dorsal neocortex in relation to CA1 multiunit activity (MUA) and SWR of sleeping and urethane anesthetized mice. Modulation of voltage and glutamate release signals in relation to SWRs varied across superficial neocortical regions, and it was largest in posteromedial regions surrounding retrosplenial cortex (RSC), which receives strong hippocampal output connections. Activity tended to spread sequentially from more medial towards more lateral regions. Contrary to the unidirectional hypothesis, activation exhibited a continuum of timing relative to SWRs, varying from neocortex leading to neocortex lagging the SWRs (± ~250 msec). The timing continuum was correlated with the skewness of peri-SWR hippocampal MUA and with a tendency for some SWR to occur in clusters. Thus, contrary to the model in which SWRs arise spontaneously in hippocampus, neocortical activation often precedes SWRs and may thus constitute a trigger event in which neocortical information seeds associative reactivation of hippocampal ‘indices’.
D1 receptors in the nucleus accumbens regulate social fear memory processing
FENS Forum 2024