Mental Simulation
mental simulation
Cognitive Maps
Ample evidence suggests that the brain generates internal simulations of the outside world to guide our thoughts and actions. These mental representations, or cognitive maps, are thought to be essential for our very comprehension of reality. I will discuss what is known about the informational structure of cognitive maps, their neural underpinnings, and how they relate to behavior, evolution, disease, and the current revolution in artificial intelligence.
An economic decision-making model of anticipated surprise with dynamic expectation
When making decision under risk, people often exhibit behaviours that classical economic theories cannot explain. Newer models that attempt to account for these ‘irrational’ behaviours often lack neuroscience bases and require the introduction of subjective and problem-specific constructs. Here, we present a decision-making model inspired by the prediction error signals and introspective neuronal replay reported in the brain. In the model, decisions are chosen based on ‘anticipated surprise’, defined by a nonlinear average of the differences between individual outcomes and a reference point. The reference point is determined by the expected value of the possible outcomes, which can dynamically change during the mental simulation of decision-making problems involving sequential stages. Our model elucidates the contribution of each stage to the appeal of available options in a decision-making problem. This allows us to explain several economic paradoxes and gambling behaviours. Our work could help bridge the gap between decision-making theories in economics and neurosciences.
Mental Simulation, Imagination, and Model-Based Deep RL
Mental simulation—the capacity to imagine what will or what could be—is a salient feature of human cognition, playing a key role in a wide range of cognitive abilities. In artificial intelligence, the last few years have seen the development of methods which are analogous to mental models and mental simulation. In this talk, I will discuss recent methods in deep learning for constructing such models from data and learning to use them via reinforcement learning, and compare such approaches to human mental simulation. While a number of challenges remain in matching the capacity of human mental simulation, I will highlight some recent progress on developing more compositional and efficient model-based algorithms through the use of graph neural networks and tree search.
A generative network model of neurodevelopment
The emergence of large-scale brain networks, and their continual refinement, represent crucial developmental processes that can drive individual differences in cognition and which are associated with multiple neurodevelopmental conditions. But how does this organization arise, and what mechanisms govern the diversity of these developmental processes? There are many existing descriptive theories, but to date none are computationally formalized. We provide a mathematical framework that specifies the growth of a brain network over developmental time. Within this framework macroscopic brain organization, complete with spatial embedding of its organization, is an emergent property of a generative wiring equation that optimizes its connectivity by renegotiating its biological costs and topological values continuously over development. The rules that govern these iterative wiring properties are controlled by a set of tightly framed parameters, with subtle differences in these parameters steering network growth towards different neurodiverse outcomes. Regional expression of genes associated with the developmental simulations converge on biological processes and cellular components predominantly involved in synaptic signaling, neuronal projection, catabolic intracellular processes and protein transport. Together, this provides a unifying computational framework for conceptualizing the mechanisms and diversity of childhood brain development, capable of integrating different levels of analysis – from genes to cognition. (Pre-print: https://www.biorxiv.org/content/10.1101/2020.08.13.249391v1)
What can we further learn from the brain for artificial intelligence?
Deep learning is a prime example of how brain-inspired computing can benefit development of artificial intelligence. But what else can we learn from the brain for bringing AI and robotics to the next level? Energy efficiency and data efficiency are the major features of the brain and human cognition that today’s deep learning has yet to deliver. The brain can be seen as a multi-agent system of heterogeneous learners using different representations and algorithms. The flexible use of reactive, model-free control and model-based “mental simulation” appears to be the basis for computational and data efficiency of the brain. How the brain efficiently acquires and flexibly combines prediction and control modules is a major open problem in neuroscience and its solution should help developments of more flexible and autonomous AI and robotics.
Eyes on the future: Unveiling mental simulations as a deliberative decision-making mechanism
FENS Forum 2024