Microstimulation
microstimulation
Distinct contributions of different anterior frontal regions to rule-guided decision-making in primates: complementary evidence from lesions, electrophysiology, and neurostimulation
Different prefrontal areas contribute in distinctly different ways to rule-guided behaviour in the context of a Wisconsin Card Sorting Test (WCST) analog for macaques. For example, causal evidence from circumscribed lesions in NHPs reveals that dorsolateral prefrontal cortex (dlPFC) is necessary to maintain a reinforced abstract rule in working memory, orbitofrontal cortex (OFC) is needed to rapidly update representations of rule value, and the anterior cingulate cortex (ACC) plays a key role in cognitive control and integrating information for correct and incorrect trials over recent outcomes. Moreover, recent lesion studies of frontopolar cortex (FPC) suggest it contributes to representing the relative value of unchosen alternatives, including rules. Yet we do not understand how these functional specializations relate to intrinsic neuronal activities nor the extent to which these neuronal activities differ between different prefrontal regions. After reviewing the aforementioned causal evidence I will present our new data from studies using multi-area multi-electrode recording techniques in NHPs to simultaneously record from four different prefrontal regions implicated in rule-guided behaviour. Multi-electrode micro-arrays (‘Utah arrays’) were chronically implanted in dlPFC, vlPFC, OFC, and FPC of two macaques, allowing us to simultaneously record single and multiunit activity, and local field potential (LFP), from all regions while the monkey performs the WCST analog. Rule-related neuronal activity was widespread in all areas recorded but it differed in degree and in timing between different areas. I will also present preliminary results from decoding analyses applied to rule-related neuronal activities both from individual clusters and also from population measures. These results confirm and help quantify dynamic task-related activities that differ between prefrontal regions. We also found task-related modulation of LFPs within beta and gamma bands in FPC. By combining this correlational recording methods with trial-specific causal interventions (electrical microstimulation) to FPC we could significantly enhance and impair animals performance in distinct task epochs in functionally relevant ways, further consistent with an emerging picture of regional functional specialization within a distributed framework of interacting and interconnected cortical regions.
Encoding local stimulus attributes and higher visual functions in V1 of behaving monkeys
In this lecture, I will present our recent progress on three aspects of population responses in the primary visual cortex: encoding local stimulus attributes, electrical microstimulation and higher visual function. In the first part I will focus on population encoding and reconstruction of contour shapes in V1 and the comparison between monkey and mouse visual responses. In the second part of the talk I will present the effects of microstimulation on neural population in V1 and the relation to evoked saccades. In the final part of the talk I will discuss top-down influences in V1 and their relation to higher visual functions.
Microneurography And Microstimulation Of Single Tactile Afferents In The Human Hand
Microneurography is a method, invented by Ake Vallbo and Karl-Erik Hagbarth in the late 1960, with which we can record the activity from single, identified nerve fibres in awake human participants. In this talk, I will then discuss the method, its advantages and limitations, and some of the key discoveries regarding coding of tactile events in the signalling from receptors in the human skin. An extension of the method is to stimulate single afferents, and record the resulting tactile sensations reported by the participants, so-called microstimulation. The first experiments were done in the 1980s, but the method has recently seen a revival, and is currently being combined with high-resolution brain imaging in the study of the relationship between tactile nerve signals, sensations, and processing of tactile information in the brain.
Intracortical microstimulation in a spiking neural network model of the primary visual cortex
Bernstein Conference 2024
Inter-areal patterned microstimulation selectively drives PFC activity and behavior in a memory task
COSYNE 2022
Inter-areal patterned microstimulation selectively drives PFC activity and behavior in a memory task
COSYNE 2022
Robustness of PFC networks under inter and intra-hemispheric patterned microstimulation perturbations
COSYNE 2023
Closed-loop electrical microstimulation to create neural population activity states
COSYNE 2025
Cingulate microstimulation induces negative bias via dampened top-down cognitive influence on primate limbic network
FENS Forum 2024
Effect of electrical microstimulation parameters on in vivo neuronal calcium responses in the visual cortex of mice
FENS Forum 2024
Electrical microstimulation of non-human primate mediodorsal thalamus during functional neuroimaging impacts dorsal anterior cingulate cortex
FENS Forum 2024
Optimizing ultraflexible electrodes microstimulation parameters for inducing localized neuronal activation in mouse V1
FENS Forum 2024
Modeling neural population responses to intracortical microstimulation
Neuromatch 5