Mitigation
mitigation
Data-driven Artificial Social Intelligence: From Social Appropriateness to Fairness
Designing artificially intelligent systems and interfaces with socio-emotional skills is a challenging task. Progress in industry and developments in academia provide us a positive outlook, however, the artificial social and emotional intelligence of the current technology is still limited. My lab’s research has been pushing the state of the art in a wide spectrum of research topics in this area, including the design and creation of new datasets; novel feature representations and learning algorithms for sensing and understanding human nonverbal behaviours in solo, dyadic and group settings; designing longitudinal human-robot interaction studies for wellbeing; and investigating how to mitigate the bias that creeps into these systems. In this talk, I will present some of my research team’s explorations in these areas including social appropriateness of robot actions, virtual reality based cognitive training with affective adaptation, and bias and fairness in data-driven emotionally intelligent systems.
Machine Learning as a tool for positive impact : case studies from climate change
Climate change is one of our generation's greatest challenges, with increasingly severe consequences on global ecosystems and populations. Machine Learning has the potential to address many important challenges in climate change, from both mitigation (reducing its extent) and adaptation (preparing for unavoidable consequences) aspects. To present the extent of these opportunities, I will describe some of the projects that I am involved in, spanning from generative model to computer vision and natural language processing. There are many opportunities for fundamental innovation in this field, advancing the state-of-the-art in Machine Learning while ensuring that this fundamental progress translates into positive real-world impact.
On climate change, multi-agent systems and the behaviour of networked control
Multi-agent reinforcement learning (MARL) has recently shown great promise as an approach to networked system control. Arguably, one of the most difficult and important tasks for which large scale networked system control is applicable is common-pool resource (CPR) management. Crucial CPRs include arable land, fresh water, wetlands, wildlife, fish stock, forests and the atmosphere, of which proper management is related to some of society’s greatest challenges such as food security, inequality and climate change. This talk will consist of three parts. In the first, we will briefly look at climate change and how it poses a significant threat to life on our planet. In the second, we will consider the potential of multi-agent systems for climate change mitigation and adaptation. And finally, in the third, we will discuss recent research from InstaDeep into better understanding the behaviour of networked MARL systems used for CPR management. More specifically, we will see how the tools from empirical game-theoretic analysis may be harnessed to analyse the differences in networked MARL systems. The results give new insights into the consequences associated with certain design choices and provide an additional dimension of comparison between systems beyond efficiency, robustness, scalability and mean control performance.
Mitigation of pathological tau abnormalities by the natural antioxidant uric acid: Comparison with DOT, a non-antibiotic oxytetracycline derivative
FENS Forum 2024
Mitigation of polyglutamine-induced toxicity through depletion of Trmt2a in an MJD/SCA3 mouse model
FENS Forum 2024