Motor Output
motor output
NMC4 Short Talk: Transient neuronal suppression for exploitation of new sensory evidence
Decision-making in noisy environments with constant sensory evidence involves integrating sequentially-sampled evidence, a strategy formalized by diffusion models which is supported by decades behavioral and neural findings. By contrast, it is unknown whether this strategy is also used during decision-making when the underlying sensory evidence is expected to change. Here, we trained monkeys to identify the dominant color of a dynamically refreshed checkerboard pattern that doesn't become informative until after a variable delay. Animals' behavioral responses were briefly suppressed after an abrupt change in evidence, and many neurons in the frontal eye field displayed a corresponding dip in activity at this time, similar to the dip frequently observed after stimulus onset. Generalized drift-diffusion models revealed that behavior and neural activity were consistent with a brief suppression of motor output without a change in evidence accumulation itself, in contrast to the popular belief that evidence accumulation is paused or reset. These results suggest that a brief interruption in motor preparation is an important strategy for dealing with changing evidence during perceptual decision making.
Reflex Regulation of Innate Immunity
Reflex circuits in the nervous system integrate changes in the environment with physiology. Compact clusters of brain neuron cell bodies, termed nuclei, are essential for receiving sensory input and for transmitting motor outputs to the body. These nucelii are critical relay stations which process incoming information and convert these signals to outgoing action potentials which regulate immune system functions. Thus, reflex neural circuits maintain parameters of immunological physiology within a narrow range optimal for health. Advances in neuroscience and immunology using optogenetics, pharmacogenetics, and functional mapping offer a new understanding of the importance of neural circuitry underlying immunity, and offer direct paths to new therapies.
Measuring behavior to measure the brain
Animals produce behavior by responding to a mixture of cues that arise both externally (sensory) and internally (neural dynamics and states). These cues are continuously produced and can be combined in different ways depending on the needs of the animal. However, the integration of these external and internal cues remains difficult to understand in natural behaviors. To address this gap, we have developed an unsupervised method to identify internal states from behavioral data, and have applied it to the study of a dynamic social interaction. During courtship, Drosophila melanogaster males pattern their songs using cues from their partner. This sensory-driven behavior dynamically modulates courtship directed at their partner. We use our unsupervised method to identify how the animal integrates sensory information into distinct underlying states. We then use this to identify the role of courtship neurons in either integrating incoming information or directing the production of the song, roles that were previously hidden. Our results reveal how animals compose behavior from previously unidentified internal states, a necessary step for quantitative descriptions of animal behavior that link environmental cues, internal needs, neuronal activity, and motor outputs.
“Circuit mechanisms for flexible behaviors”
Animals constantly modify their behavior through experience. Flexible behavior is key to our ability to adapt to the ever-changing environment. My laboratory is interested in studying the activity of neuronal ensembles in behaving animals, and how it changes with learning. We have recently set up a paradigm where mice learn to associate sensory information (two different odors) to motor outputs (lick vs no-lick) under head-fixation. We combined this with two-photon calcium imaging, which can monitor the activity of a microcircuit of many tens of neurons simultaneously from a small area of the brain. Imaging the motor cortex during the learning of this task revealed neurons with diverse task-related response types. Intriguingly, different response types were spatially intermingled; even immediately adjacent neurons often had very different response types. As the mouse learned the task under the microscope, the activity coupling of neurons with similar response types specifically increased, even though they are intermingled with neurons with dissimilar response types. This suggests that intermingled subnetworks of functionally-related neurons form in a learning-related way, an observation that became possible with our cutting-edge technique combining imaging and behavior. We are working to extend this study. How plastic are neuronal microcircuits during other forms of learning? How plastic are they in other parts of the brain? What are the cellular and molecular mechanisms of the microcircuit plasticity? Are the observed activity and plasticity required for learning? How does the activity of identified individual neurons change over days to weeks? We are asking these questions, combining a variety of techniques including in vivo two-photon imaging, optogenetics, electrophysiology, genetics and behavior.
Variability, maintenance and learning in birdsong
The songbird zebra finch is an exemplary model system in which to study trial-and-error learning, as the bird learns its single song gradually through the production of many noisy renditions. It is also a good system in which to study the maintenance of motor skills, as the adult bird actively maintains its song and retains some residual plasticity. Motor learning occurs through the association of timing within the song, represented by sparse firing in nucleus HVC, with motor output, driven by nucleus RA. Here we show through modeling that the small level of observed variability in HVC can result in a network which is more easily able to adapt to change, and is most robust to cell damage or death, than an unperturbed network. In collaboration with Carlos Lois’ lab, we also consider the effect of directly perturbing HVC through viral injection of toxins that affect the firing of projection neurons. Following these perturbations, the song is profoundly affected but is able to almost perfectly recover. We characterize the changes in song acoustics and syntax, and propose models for HVC architecture and plasticity that can account for some of the observed effects. Finally, we suggest a potential role for inputs from nucleus Uva in helping to control timing precision in HVC.
An evolutionarily conserved hindwing circuit mediates Drosophila flight control
My research at the interface of neurobiology, biomechanics, and behavior seeks to understand how the timing precision of sensory input structures locomotor output. My lab studies the flight behavior of the fruit fly, Drosophila melanogaster, combining powerful genetic tools available for labeling and manipulating neural circuits with cutting-edge imaging in awake, behaving animals. This work has the potential to fundamentally reshape understanding of the evolution of insect flight, as well as highlight the tremendous importance of timing in the context of locomotion. Timing is crucial to the nervous system. The ability to rapidly detect and process subtle disturbances in the environment determines whether an animal can attain its next meal or successfully navigate complex, unpredictable terrain. While previous work on various animals has made tremendous strides uncovering the specialized neural circuits used to resolve timing differences with sub-microsecond resolution, it has focused on the detection of timing differences in sensory systems. Understanding of how the timing of motor output is structured by precise sensory input remains poor. My research focuses on an organ unique to fruit flies, called the haltere, that serves as a bridge for detecting and acting on subtle timing differences, helping flies execute rapid maneuvers. Understanding how this relatively simple insect canperform such impressive aerial feats demands an integrative approach that combines physics, muscle mechanics, neuroscience, and behavior. This unique, powerful approach will reveal the general principles that govern sensorimotor processing.
Motor Cortical Control of Vocal Interactions in a Neotropical Singing Mouse
Using sounds for social interactions is common across many taxa. Humans engaged in conversation, for example, take rapid turns to go back and forth. This ability to act upon sensory information to generate a desired motor output is a fundamental feature of animal behavior. How the brain enables such flexible sensorimotor transformations, for example during vocal interactions, is a central question in neuroscience. Seeking a rodent model to fill this niche, we are investigating neural mechanisms of vocal interaction in Alston’s singing mouse (Scotinomys teguina) – a neotropical rodent native to the cloud forests of Central America. We discovered sub-second temporal coordination of advertisement songs (counter-singing) between males of this species – a behavior that requires the rapid modification of motor outputs in response to auditory cues. We leveraged this natural behavior to probe the neural mechanisms that generate and allow fast and flexible vocal communication. Using causal manipulations, we recently showed that an orofacial motor cortical area (OMC) in this rodent is required for vocal interactions (Okobi*, Banerjee* et. al, 2019). Subsequently, in electrophysiological recordings, I find neurons in OMC that track initiation, termination and relative timing of songs. Interestingly, persistent neural dynamics during song progression stretches or compresses on every trial to match the total song duration (Banerjee et al, in preparation). These results demonstrate robust cortical control of vocal timing in a rodent and upends the current dogma that motor cortical control of vocal output is evolutionarily restricted to the primate lineage.
The complexity of the ordinary – neural control of locomotion
Today, considerable information is available on the organization and operation of the neural networks that generate the motor output for animal locomotion, such as swimming, walking, or flying. In recent years, the question of which neural mechanisms are responsible for task-specific and flexible adaptations of locomotor patterns has gained increased attention in the field of motor control. I will report on advances we made with respect to this topic for walking in insects, i.e. the leg muscle control system of phasmids and fruit flies. I will present insights into the neural basis of speed control, heading, walking direction, and the role of ground contact in insect walking, both for local control and intersegmental coordination. For these changes in motor activity modifications in the processing of sensory feedback signals play a pivotal role, for instance for movement and load signals in heading and curve walking or for movement signals that contribute to intersegmental coordination. Our recent findings prompt future investigations that aim to elucidate the mechanisms by which descending and intersegmental signals interact with local networks in the generation of motor flexibility during walking in animals.
Flexible motor sequencing through thalamic control of cortical dynamics
The mechanisms by which neural circuits generate an extensible library of motor motifs and flexibly string them into arbitrary sequences are unclear. We developed a model in which inhibitory basal ganglia output neurons project to thalamic units that are themselves bidirectionally connected to a recurrent cortical network. During movement sequences, electrophysiological recordings of basal ganglia output neurons show sustained activity patterns that switch at the boundaries between motifs. Thus, we model these inhibitory patterns as silencing some thalamic neurons while leaving others disinhibited and free to interact with cortex during specific motifs. We show that a small number of disinhibited thalamic neurons can control cortical dynamics to generate specific motor output in a noise robust way. If the thalamic units associated with each motif are segregated, many motor outputs can be learned without interference and then combined in arbitrary orders for the flexible production of long and complex motor sequences.
Neural mechanisms of proprioception and motor control in Drosophila
Animals rely on an internal sense of body position and movement to effectively control motor behaviour. This sense of proprioception is mediated by diverse populations of internal mechanosensory neurons distributed throughout the body. My lab is trying to understand how proprioceptive stimuli are detected by sensory neurons, integrated and transformed in central circuits, and used to guide motor output. We approach these questions using genetic tools, in vivo two-photon imaging, and patch-clamp electrophysiology in Drosophila. We recently found that the axons of fly leg proprioceptors are organized into distinct functional projections that contain topographic representations of specific kinematic features: one group of axons encodes tibia position, another encodes movement direction, and a third encodes bidirectional movement and vibration frequency. Whole-cell recordings from downstream neurons reveal that position, movement, and directional information remain segregated in central circuits. These feedback signals then converge upon motor neurons that control leg muscles during walking. Overall, our findings reveal how a low-dimensional stimulus – the angle of a single leg joint – is encoded by a diverse population of mechanosensory neurons. Specific proprioceptive parameters are initially processed by parallel pathways, but are ultimately integrated to influence motor output. This architecture may help to maximize information transmission, processing speed, and robustness, which are critical for feedback control of the limbs during adaptive locomotion.
Activation of L2/3 neurons in the primary somatosensory cortex during motor output
FENS Forum 2024