← Back

Motor Systems

Topic spotlight
TopicWorld Wide

motor systems

Discover seminars, jobs, and research tagged with motor systems across World Wide.
6 curated items4 Seminars1 Position1 ePoster
Updated 2 days ago
6 items · motor systems
6 results
Position

Arcadia Science

Arcadia Science
Berkeley, California, US
Dec 5, 2025

A Bit About Us: We are Arcadia Science. Arcadia is a well-funded for-profit biology research and development company founded and led by scientists. Our mission is to give a community of researchers the freedom and tools to be adventurous, to discover, and to make scientific exploration financially self-sustaining in the life sciences. We are inspired by the spirit of exploration and aspire to evolve how science is done, who it attracts and rewards, and what it can achieve. Research @ Arcadia: At Arcadia, we are building an intramural research and development program that will encompass three areas: (1) emerging organismal biology, (2) enabling research technologies, and (3) translational development. Research areas will be carried out by independent scientists and those working together towards shared goals. Projects will be collaborative in nature and pursue science that is more high-risk and exploratory than typical life science research programs. We will invest heavily in creative technologies that can invent new research tools or optimize workflows for emerging organismal systems. In addition to conducting research, Arcadia scientists will drive engagement with the broader scientific community in order to maximize the impact of our work and identify research areas and needs that Arcadia may be uniquely positioned to address.

SeminarNeuroscienceRecording

Internal representation of musical rhythm: transformation from sound to periodic beat

Tomas Lenc
Institute of Neuroscience, UCLouvain, Belgium
May 30, 2023

When listening to music, humans readily perceive and move along with a periodic beat. Critically, perception of a periodic beat is commonly elicited by rhythmic stimuli with physical features arranged in a way that is not strictly periodic. Hence, beat perception must capitalize on mechanisms that transform stimulus features into a temporally recurrent format with emphasized beat periodicity. Here, I will present a line of work that aims to clarify the nature and neural basis of this transformation. In these studies, electrophysiological activity was recorded as participants listened to rhythms known to induce perception of a consistent beat across healthy Western adults. The results show that the human brain selectively emphasizes beat representation when it is not acoustically prominent in the stimulus, and this transformation (i) can be captured non-invasively using surface EEG in adult participants, (ii) is already in place in 5- to 6-month-old infants, and (iii) cannot be fully explained by subcortical auditory nonlinearities. Moreover, as revealed by human intracerebral recordings, a prominent beat representation emerges already in the primary auditory cortex. Finally, electrophysiological recordings from the auditory cortex of a rhesus monkey show a significant enhancement of beat periodicities in this area, similar to humans. Taken together, these findings indicate an early, general auditory cortical stage of processing by which rhythmic inputs are rendered more temporally recurrent than they are in reality. Already present in non-human primates and human infants, this "periodized" default format could then be shaped by higher-level associative sensory-motor areas and guide movement in individuals with strongly coupled auditory and motor systems. Together, this highlights the multiplicity of neural processes supporting coordinated musical behaviors widely observed across human cultures.The experiments herein include: a motor timing task comparing the effects of movement vs non-movement with and without feedback (Exp. 1A & 1B), a transcranial magnetic stimulation (TMS) study on the role of the supplementary motor area (SMA) in transforming temporal information (Exp. 2), and a perceptual timing task investigating the effect of noisy movement on time perception with both visual and auditory modalities (Exp. 3A & 3B). Together, the results of these studies support the Bayesian cue combination framework, in that: movement improves the precision of time perception not only in perceptual timing tasks but also motor timing tasks (Exp. 1A & 1B), stimulating the SMA appears to disrupt the transformation of temporal information (Exp. 2), and when movement becomes unreliable or noisy there is no longer an improvement in precision of time perception (Exp. 3A & 3B). Although there is support for the proposed framework, more studies (i.e., fMRI, TMS, EEG, etc.) need to be conducted in order to better understand where and how this may be instantiated in the brain; however, this work provides a starting point to better understanding the intrinsic connection between time and movement

SeminarNeuroscienceRecording

What is Cognitive Neuropsychology Good For? An Unauthorized Biography

Alfonso Caramazza
Cognitive Neuropsychology Laboratory, Harvard University, USA; Center for Mind/Brain Sciences (CIMeC), University of Trento, Italy
Feb 22, 2022

Abstract: There is no doubt that the study of brain damaged individuals has contributed greatly to our understanding of the mind/brain. Within this broad approach, cognitive neuropsychology accentuates the cognitive dimension: it investigates the structure and organization of perceptual, motor, cognitive, and language systems – prerequisites for understanding the functional organization of the brain – through the analysis of their dysfunction following brain damage. Significant insights have come specifically from this paradigm. But progress has been slow and enthusiasm for this approach has waned somewhat in recent years, and the use of existing findings to constrain new theories has also waned. What explains the current diminished status of cognitive neuropsychology? One reason may be failure to calibrate expectations about the effective contribution of different subfields of the study of the mind/brain as these are determined by their natural peculiarities – such factors as the types of available observations and their complexity, opportunity of access to such observations, the possibility of controlled experimentation, and the like. Here, I also explore the merits and limitations of cognitive neuropsychology, with particular focus on the role of intellectual, pragmatic, and societal factors that determine scientific practice within the broader domains of cognitive science/neuroscience. I conclude on an optimistic note about the continuing unique importance of cognitive neuropsychology: although limited to the study of experiments of nature, it offers a privileged window into significant aspects of the mind/brain that are not easily accessible through other approaches. Biography: Alfonso Caramazza's research has focussed extensively on how words and their meanings are represented in the brain. His early pioneering studies helped to reformulate our thinking about Broca's aphasia (not limited to production) and formalised the logic of patient-based neuropsychology. More recently he has been instrumental in reconsidering popular claims about embodied cognition.

SeminarNeuroscience

Neuropunk revolution and its implementation via real-time neurosimulations and their integrations

Maxim Talanov
B-Rain Labs LLC, ITIS KFU
Oct 20, 2021

In this talk I present the perspectives of the "neuropunk revolution'' technologies. One could understand the "neuropunk revolution'' as the integration of real-time neurosimulations into biological nervous/motor systems via neurostimulation or artificial robotic systems via integration with actuators. I see the added value of the real-time neurosimulations as bridge technology for the set of developed technologies: BCI, neuroprosthetics, AI, robotics to provide bio-compatible integration into biological or artificial limbs. Here I present the three types of integration of the "neuropunk revolution'' technologies as inbound, outbound and closed-loop in-outbound systems. I see the shift of the perspective of how we see now the set of technologies including AI, BCI, neuroprosthetics and robotics due to the proposed concept for example the integration of external to a body simulated part of the nervous system back into the biological nervous system or muscles.

SeminarNeuroscience

Cortical population coding of consumption decisions

Donald B. Katz
Brandeis University
Jun 29, 2020

The moment that a tasty substance enters an animal’s mouth, the clock starts ticking. Taste information transduced on the tongue signals whether a potential food will nourish or poison, and the animal must therefore use this information quickly if it is to decide whether the food should be swallowed or expelled. The system tasked with computing this important decision is rife with cross-talk and feedback—circuitry that all but ensures dynamics and between-neuron coupling in neural responses to tastes. In fact, cortical taste responses, rather than simply reporting individual taste identities, do contain characterizable dynamics: taste-driven firing first reflects the substance’s presence on the tongue, and then broadly codes taste quality, and then shifts again to correlate with the taste’s current palatability—the basis of consumption decisions—all across the 1-1.5 seconds after taste administration. Ensemble analyses reveal the onset of palatability-related firing to be a sudden, nonlinear transition happening in many neurons simultaneously, such that it can be reliably detected in single trials. This transition faithfully predicts both the nature and timing of consumption behaviours, despite the huge trial-to-trial variability in both; furthermore, perturbations of this transition interfere with production of the behaviours. These results demonstrate the specific importance of ensemble dynamics in the generation of behaviour, and reveal the taste system to be akin to a range of other integrated sensorimotor systems.

ePoster

Interactions between sensory and motor systems: Corticocerebellar circuits and task engagement

Julia Henschke, Janelle Pakan

FENS Forum 2024