Mtor
mTOR
Myelin Formation and Oligodendrocyte Biology in Epilepsy
Epilepsy is one of the most common neurological diseases according to the World Health Organization (WHO) affecting around 70 million people worldwide [WHO]. Patients who suffer from epilepsy also suffer from a variety of neuro-psychiatric co-morbidities, which they can experience as crippling as the seizure condition itself. Adequate organization of cerebral white matter is utterly important for cognitive development. The failure of integration of neurologic function with cognition is reflected in neuro-psychiatric disease, such as autism spectrum disorder (ASD). However, in epilepsy we know little about the importance of white matter abnormalities in epilepsy-associated co-morbidities. Epilepsy surgery is an important therapy strategy in patients where conventional anti-epileptic drug treatment fails . On histology of the resected brain samples, malformations of cortical development (MCD) are common among the epilepsy surgery population, especially focal cortical dysplasia (FCD) and tuberous sclerosis complex (TSC). Both pathologies are associated with constitutive activation of the mTOR pathway. Interestingly, some type of FCD is morphological similar to TSC cortical tubers including the abnormalities of the white matter. Hypomyelination with lack of myelin-producing cells, the oligodendrocytes, within the lesional area is a striking phenomenon. Impairment of the complex myelination process can have a major impact on brain function. In the worst case leading to distorted or interrupted neurotransmissions. It is still unclear whether the observed myelin pathology in epilepsy surgical specimens is primarily related to the underlying malformation process or is just a secondary phenomenon of recurrent epileptic seizures creating a toxic micro-environment which hampers myelin formation. Interestingly, mTORC1 has been implicated as key signal for myelination, thus, promoting the maturation of oligodendrocytes . These results, however, remain controversial. Regardless of the underlying pathophysiologic mechanism, alterations of myelin dynamics, depending on their severity, are known to be linked to various kinds of developmental disorders or neuropsychiatric manifestations.
Brain mosaicism in epileptogenic cortical malformations
Focal Cortical Dysplasia (FCD) is the most common focal cortical malformation leading to intractable childhood focal epilepsy. In recent years, we and others have shown that FCD type II is caused by mosaic mutations in genes within the PI3K-AKT-mTOR-signaling pathway. Hyperactivation of the mTOR pathway accounts for neuropathological abnormalities and seizure occurrence in FCD. We further showed from human surgical FCDII tissue that epileptiform activity correlates with the density of mutated dysmorphic neurons, supporting their pro-epileptogenic role. The level of mosaicism, as defined by variant allele frequency (VAF) is thought to correlate with the size and regional brain distribution of the lesion such that when a somatic mutation occurs early during the cortical development, the dysplastic area is smaller than if it occurs later. Novel approaches based on the detection of cell-free DNA from the CSF and from trace tissue adherent to SEEG electrodes promise future opportunities for genetic testing during the presurgical evaluation of refractory epilepsy patients or in those that are not eligible for surgery. In utero-based electroporation mouse models allow to express somatic mutation during neurodevelopment and recapitulate most neuropathological and clinical features of FCDII, establishing relevant preclinical mouse models for developing precision medicine strategies.
Myelin Formation and Oligodendrocyte Biology in Epilepsy
Epilepsy is one of the most common neurological diseases according to the World Health Organization (WHO) affecting around 70 million people worldwide [WHO]. Patients who suffer from epilepsy also suffer from a variety of neuro-psychiatric co-morbidities, which they can experience as crippling as the seizure condition itself. Adequate organization of cerebral white matter is utterly important for cognitive development. The failure of integration of neurologic function with cognition is reflected in neuro-psychiatric disease, such as autism spectrum disorder (ASD). However, in epilepsy we know little about the importance of white matter abnormalities in epilepsy-associated co-morbidities. Epilepsy surgery is an important therapy strategy in patients where conventional anti-epileptic drug treatment fails . On histology of the resected brain samples, malformations of cortical development (MCD) are common among the epilepsy surgery population, especially focal cortical dysplasia (FCD) and tuberous sclerosis complex (TSC). Both pathologies are associated with constitutive activation of the mTOR pathway. Interestingly, some type of FCD is morphological similar to TSC cortical tubers including the abnormalities of the white matter. Hypomyelination with lack of myelin-producing cells, the oligodendrocytes, within the lesional area is a striking phenomenon. Impairment of the complex myelination process can have a major impact on brain function. In the worst case leading to distorted or interrupted neurotransmissions. It is still unclear whether the observed myelin pathology in epilepsy surgical specimens is primarily related to the underlying malformation process or is just a secondary phenomenon of recurrent epileptic seizures creating a toxic micro-environment which hampers myelin formation. Interestingly, mTORC1 has been implicated as key signal for myelination, thus, promoting the maturation of oligodendrocytes . These results, however, remain controversial. Regardless of the underlying pathophysiologic mechanism, alterations of myelin dynamics, depending on their severity, are known to be linked to various kinds of developmental disorders or neuropsychiatric manifestations.
Brain-muscle signaling coordinates exercise adaptations in Drosophila
Chronic exercise is a powerful intervention that lowers the incidence of most age-related diseases while promoting healthy metabolism in humans. However, illness, injury or age prevent many humans from consistently exercising. Thus, identification of molecular targets that can mimic the benefits of exercise would be a valuable tool to improve health outcomes of humans with neurodegenerative or mitochondrial diseases, or those with enforced sedentary lifestyles. Using a novel exercise platform for Drosophila, we have identified octopaminergic neurons as a key subset of neurons that are critical for the exercise response, and shown that periodic daily stimulation of these neurons can induce a systemic exercise response in sedentary flies. Octopamine is released into circulation where it signals through various octopamine receptors in target tissues and induces gene expression changes similar to exercise. In particular, we have identified several key molecules that respond to octopamine in skeletal muscle, including the mTOR modulator Sestrin, the PGC-1α homolog Spargel, and the FNDC5/Irisin homolog Iditarod. We are currently testing these molecules as potential therapies for multiple diseases that reduce mobility, including the PolyQ disease SCA2 and the mitochondrial disease Barth syndrome.
Disrupted mTOR signaling in epileptogenesis
Mechanisms of sleep-seizure interactions in tuberous sclerosis and other mTORpathies
An intriguing, relatively unexplored therapeutic avenue to investigate epilepsy is the interaction of sleep mechanisms and seizures. Multiple lines of clinical observations suggest a strong, bi-directional relationship between epilepsy and sleep. Epilepsy and sleep disorders are common comorbidities. Seizures occur more commonly in sleep in many types of epilepsy, and in turn, seizures can cause disrupted sleep. Sudden unexplained death in epilepsy (SUDEP) is strongly associated with sleep. The biological mechanisms underlying this relationship between seizures and sleep are poorly understood, but if better delineated, could offer novel therapeutic approaches to treating both epilepsy and sleep disorders. In this presentation, I will explore this sleep-seizure relationship in mouse models of epilepsy. First, I will present general approaches for performing detailed longitudinal sleep and vigilance state analysis in mice, including pre-weanling neonatal mice. I will then discuss recent data from my laboratory demonstrating an abnormal sleep phenotype in a mouse model of the genetic epilepsy, tuberous sclerosis complex (TSC), and its relationship to seizures. The potential mechanistic basis of sleep abnormalities and sleep-seizure interactions in this TSC model will be investigated, focusing on the role of the mechanistic target of rapamycin (mTOR) pathway and hypothalamic orexin, with potential therapeutic applications of mTOR inhibitors and orexin antagonists. Finally, similar sleep-seizure interactions and mechanisms will be extended to models of acquired epilepsy due to status epilepticus-related brain injury.
Understanding the Mechanisms of Epilepsy in mTORopathies
Malformation of cortical development: the genesis of epileptogenic networks
Malformations of cortical development (MCDs) result from alterations of one or combined developmental steps, including progenitors proliferation, neuronal migration and differentiation. They are important cause of childhood epilepsy and frequently associate cognitive deficits and behavioral alterations. Though the genetic basis of MCDs have known prominent progress during the past decade, including the identification of somatic, mosaic mutations responsible for focal MCDs, the pathophysiological mechanisms linking malformations to epileptogenesis remain elusive. In this seminar I will present data from my team and from the literature addressing this topic in two different MCDs types, the subcortical band heterotopia as a model of cortical migration defect and mTOR- dependent MCDs , that characterize by cortical dyslamination and neuronal differentiation defects.
Dysregulation of mTOR Signaling Mediates Common Neurite and Migration Defects in Idiopathic and 16p11.2 Deletion Autism neural progenitors
Understanding and treating epilepsy in tuberous sclerosis complex
Tuberous sclerosis complex (TSC) and focal cortical dysplasia type II (FCDII) are caused by mutations in mTOR pathway genes leading to mTOR hyperactivity, focal malformations of cortical development (fMCD), and seizures in 80-90% of the patients. The current definitive treatments for epilepsy are surgical resection or treatment with everolimus, which inhibits mTOR activity (only approved for TSC). Because both options have severe limitations, there is a major need to better understand the mechanisms leading to seizures to improve life-long epilepsy treatment in TSC and FCDII. To investigate such mechanisms, we recently developed a murine model of fMCD-associated epilepsy that recapitulates the human TSC and FCDII disorders. fMCD are defined by the presence of misplaced, dysmorphic cortical neurons expressing hyperactive mTOR – for simplicity we will refer to these as “mutant” neurons. In our model and in human TSC tissue, we made a surprising finding that mutant neurons express HCN4 channels, which are not normally functionally expressed in cortical neurons, and increased levels of filamin A (FLNA). FLNA is an actin-crossing linking molecule that has also multiple binding partners inside cells. These data led us to ask several important questions: (1) As HCN4 channels are responsible for the pacemaking activity of the heart, can HCN4 channel expression lead to repetitive firing of mutant neurons resulting in seizures? (2) HCN4 is the most cAMP-sensitive of the four HCN isoforms. Does increase in cAMP lead to the firing of mutant neurons? (3) Does increase in FLNA contribute to neuronal alterations and seizures? (4) Is the abnormal HCN4 and FLNA expression in mutant neurons due to mTOR? These questions will be discussed and addressed in the lecture.
β-Endorphin mitigates UVB-induced epidermal barrier dysfunction through control of inflammation-driven mTORC1 pathways
FENS Forum 2024
Differential impact of calorie restriction on memory and mTOR signaling in aging female Wistar rats
FENS Forum 2024
Effects of a downregulation of mTORC1’s pathway in D2R cells of nucleus accumbens on impulsive behavior in rats
FENS Forum 2024
Effects of over-activation of mTOR in the infant amygdala on its functionality at adolescence in rats
FENS Forum 2024
Evidence for involvement of an mTORopathic hippocampal DG/CA3 connectopathy in the etiology and cognitive comorbidities of medial temporal lobe epilepsy
FENS Forum 2024
High and low frequencies of binge-like ethanol exposure in rats disrupt mGluR-LTD in hippocampus slices in a bidirectional way: Role of mTOR
FENS Forum 2024
Identification of novel mTORC1 targets during neurodevelopment in tuberous sclerosis complex
FENS Forum 2024
Inhibition of PI3K/Akt/mTOR pathway modulates LPS-induced metabolic changes in microglia
FENS Forum 2024
The interplay between mTORC2 and oxidative stress in neurotoxic models of neurodegeneration
FENS Forum 2024
Metformin inhibits orofacial neuropathy through p-AMPK/p-mTOR-mediated p-p38 MAPK activation in streptozotocin-induced diabetic neuropathic mice
FENS Forum 2024
A mosaic mTOR cortical organoid model for focal cortical dysplasia type II (FCDII)
FENS Forum 2024
mTOR pathway disruption in GABAergic neurons impacts morphological and functional development of cortical and thalamic somatosensory areas in a mouse model of autism spectrum disorder
FENS Forum 2024
Proteasomal degradation of BAF complex subunit Brg1 upon increased neuronal activity and mTOR hyperactivation
FENS Forum 2024
Role of mTORC1 on prefrontal inhibitory plasticity during memory consolidation
FENS Forum 2024
Rptor/mTORC1 function in radial glia progenitor lineage progression
FENS Forum 2024
Sex-specific attenuated mTOR signaling after acute and chronic sleep loss
FENS Forum 2024
Unraveling mTORopathies: mTOR hyperactivation induces mutation-specific functional phenotypes in human neuronal networks
FENS Forum 2024