Narratives
narratives
Digital Traces of Human Behaviour: From Political Mobilisation to Conspiracy Narratives
Digital platforms generate unprecedented traces of human behaviour, offering new methodological approaches to understanding collective action, polarisation, and social dynamics. Through analysis of millions of digital traces across multiple studies, we demonstrate how online behaviours predict offline action: Brexit-related tribal discourse responds to real-world events, machine learning models achieve 80% accuracy in predicting real-world protest attendance from digital signals, and social validation through "likes" emerges as a key driver of mobilization. Extending this approach to conspiracy narratives reveals how digital traces illuminate psychological mechanisms of belief and community formation. Longitudinal analysis of YouTube conspiracy content demonstrates how narratives systematically address existential, epistemic, and social needs, while examination of alt-tech platforms shows how emotions of anger, contempt, and disgust correlate with violence-legitimating discourse, with significant differences between narratives associated with offline violence versus peaceful communities. This work establishes digital traces as both methodological innovation and theoretical lens, demonstrating that computational social science can illuminate fundamental questions about polarisation, mobilisation, and collective behaviour across contexts from electoral politics to conspiracy communities.
Analogical retrieval across disparate task domains
Previous experiments have shown that a comparison of two written narratives highlights their shared relational structure, which in turn facilitates the retrieval of analogous narratives from the past (e.g., Gentner, Loewenstein, Thompson, & Forbus, 2009). However, analogical retrieval occurs across domains that appear more conceptually distant than merely different narratives, and the deepest analogies use matches in higher-order relational structure. The present study investigated whether comparison can facilitate analogical retrieval of higher-order relations across written narratives and abstract symbolic problems. Participants read stories which became retrieval targets after a delay, cued by either analogous stories or letter-strings. In Experiment 1 we replicated Gentner et al. who used narrative retrieval cues, and also found preliminary evidence for retrieval between narrative and symbolic domains. In Experiment 2 we found clear evidence that a comparison of analogous letter-string problems facilitated the retrieval of source stories with analogous higher-order relations. Experiment 3 replicated the retrieval results of Experiment 2 but with a longer delay between encoding and recall, and a greater number of distractor source stories. These experiments offer support for the schema induction account of analogical retrieval (Gentner et al., 2009) and show that the schemas abstracted from comparison of narratives can be transferred to non-semantic symbolic domains.
Language Representations in the Human Brain: A naturalistic approach
Natural language is strongly context-dependent and can be perceived through different sensory modalities. For example, humans can easily comprehend the meaning of complex narratives presented through auditory speech, written text, or visual images. To understand how complex language-related information is represented in the human brain there is a necessity to map the different linguistic and non-linguistic information perceived under different modalities across the cerebral cortex. To map this information to the brain, I suggest following a naturalistic approach and observing the human brain performing tasks in its naturalistic setting, designing quantitative models that transform real-world stimuli into specific hypothesis-related features, and building predictive models that can relate these features to brain responses. In my talk, I will present models of brain responses collected using functional magnetic resonance imaging while human participants listened to or read natural narrative stories. Using natural text and vector representations derived from natural language processing tools I will present how we can study language processing in the human brain across modalities, in different levels of temporal granularity, and across different languages.
Storythinking: Why Your Brain is Creative in Ways that Computer AI Can't Ever Be
Computer AI thinks differently from us, which is why it's such a useful tool. Thanks to the ingenuity of human programmers, AI's different method of thinking has made humans redundant at certain human tasks, such as chess. Yet there are mechanical limits to how far AI can replicate the products of human thinking. In this talk, we'll trace one such limit by exploring how AI and humans create differently. Humans create by reverse-engineering tools or behaviors to accomplish new actions. AI creates by mix-and-matching pieces of preexisting structures and labeling which combos are associated with positive and negative results. This different procedure is why AI cannot (and will never) learn to innovate technology or tactics and why it also cannot (and will never) learn to generate narratives (including novels, business plans, and scientific hypotheses). It also serves as a case study in why there's no reason to believe in "general intelligence" and why computer AI would have to partner with other mechanical forms of AI (run on non-computer hardware that, as of yet, does not exist, and would require humans to invent) for AI to take over the globe.
Cognition plus longevity equals culture: A new framework for understanding human brain evolution
Narratives of human evolution have focused on cortical expansion and increases in brain size relative to body size, but considered that changes in life history, such as in age at sexual maturity and thus the extent of childhood and maternal dependence, or maximal longevity, are evolved features that appeared as consequences of selection for increased brain size, or increased cognitive abilities that decrease mortality rates, or due to selection for grandmotherly contribution to feeding the young. Here I build on my recent finding that slower life histories universally accompany increased numbers of cortical neurons across warm-blooded species to propose a simpler framework for human evolution: that slower development to sexual maturity and increased post-maturity longevity are features that do not require selection, but rather inevitably and immediately accompany evolutionary increases in numbers of cortical neurons, thus fostering human social interactions and cultural and technological evolution as generational overlap increases.
It’s not what you look at that matters, it’s what you see
People frequently interpret the same information differently, based on their prior beliefs and views. This may occur in everyday settings, as when two friends are watching the same movie, but also in more consequential circumstances, such as when people interpret the same news differently based on their political views. The role of subjective knowledge in altering how the brain processes narratives has been explored mainly in controlled settings. I will present two projects that examines neural mechanisms underlying narrative interpretation “in the wild” -- how responses differ between two groups of people who interpret the same narrative in two coherent, but opposing ways. In the first project we manipulated participant’s prior knowledge to make them interpret the narrative differently, and found that responses in high-order areas, including the default mode network, language areas and subsets of the mirror neuron system, tend to be similar among people who share the same interpretation, but different from people with an opposing interpretation. In contrast to the active manipulation of participants’ interpretation in the first study, in the second (ongoing) project we examine these processes in a more ecological setting. Taking advantage of people’s natural tendencies to interpret the world through their own (political) filters, we examine these mechanisms while measuring their brain response to political movie clips. These studies are intended to deepen our understanding of the differences in subjective construal processes, by mapping their underlying brain mechanisms.
Growing up in Science
Have you ever wondered what your advisor struggled with as a graduate student? What they struggle with now? Growing up in science is a conversation series featuring personal narratives of becoming and being a scientist, with a focus on the unspoken challenges of a life in science. Growing up in Science was started in 2014 at New York University and is now worldwide. This article describes the origin and impact of the series. At a typical Growing up in Science event, one faculty member shares their life story, with a focus on struggles, failures, doubts, detours, and weaknesses. Common topics include dealing with expectations, impostor syndrome, procrastination, luck, rejection, conflicts with advisors, and work-life balance, life outside academia but these topics are always embedded in the speaker’s broader narrative. Cortex Club is hosting its first Growing up in science event! Join us on Friday the 31st July at 4pm for hearing the unofficial story of Dr André Marques-Smith, computational neuroscientist at CoMind (read his official and unofficial story at https://cortexclub.com/event/growing-up-in-science-oxford/). Details to join the talk will be circulated via the mailing list (to join our mailing list, follow the instructions at https://cortexclub.com/join-us/).
Schemas: events, spaces, semantics, and development
Understanding and remembering realistic experiences in our everyday lives requires activating many kinds of structured knowledge about the world, including spatial maps, temporal event scripts, and semantic relationships. My recent projects have explored the ways in which we build up this schematic knowledge (during a single experiment and across developmental timescales) and can strategically deploy them to construct event representations that we can store in memory or use to make predictions. I will describe my lab's ongoing work developing new experimental and analysis techniques for conducting functional MRI experiments using narratives, movies, poetry, virtual reality, and "memory experts" to study complex naturalistic schemas.