← Back

Natural Stimuli

Topic spotlight
TopicWorld Wide

natural stimuli

Discover seminars, jobs, and research tagged with natural stimuli across World Wide.
3 curated items3 Seminars
Updated over 3 years ago
3 items · natural stimuli
3 results
SeminarNeuroscienceRecording

The balance of excitation and inhibition and a canonical cortical computation

Yashar Ahmadian
Cambridge, UK
Apr 26, 2022

Excitatory and inhibitory (E & I) inputs to cortical neurons remain balanced across different conditions. The balanced network model provides a self-consistent account of this observation: population rates dynamically adjust to yield a state in which all neurons are active at biological levels, with their E & I inputs tightly balanced. But global tight E/I balance predicts population responses with linear stimulus-dependence and does not account for systematic cortical response nonlinearities such as divisive normalization, a canonical brain computation. However, when necessary connectivity conditions for global balance fail, states arise in which only a localized subset of neurons are active and have balanced inputs. We analytically show that in networks of neurons with different stimulus selectivities, the emergence of such localized balance states robustly leads to normalization, including sublinear integration and winner-take-all behavior. An alternative model that exhibits normalization is the Stabilized Supralinear Network (SSN), which predicts a regime of loose, rather than tight, E/I balance. However, an understanding of the causal relationship between E/I balance and normalization in SSN and conditions under which SSN yields significant sublinear integration are lacking. For weak inputs, SSN integrates inputs supralinearly, while for very strong inputs it approaches a regime of tight balance. We show that when this latter regime is globally balanced, SSN cannot exhibit strong normalization for any input strength; thus, in SSN too, significant normalization requires localized balance. In summary, we causally and quantitatively connect a fundamental feature of cortical dynamics with a canonical brain computation. Time allowing I will also cover our work extending a normative theoretical account of normalization which explains it as an example of efficient coding of natural stimuli. We show that when biological noise is accounted for, this theory makes the same prediction as the SSN: a transition to supralinear integration for weak stimuli.

SeminarNeuroscience

Nonlinear spatial integration in retinal bipolar cells shapes the encoding of artificial and natural stimuli

Helene Schreyer
Gollisch lab, University Medical Center Göttingen, Germany
Dec 8, 2021

Vision begins in the eye, and what the “retina tells the brain” is a major interest in visual neuroscience. To deduce what the retina encodes (“tells”), computational models are essential. The most important models in the retina currently aim to understand the responses of the retinal output neurons – the ganglion cells. Typically, these models make simplifying assumptions about the neurons in the retinal network upstream of ganglion cells. One important assumption is linear spatial integration. In this talk, I first define what it means for a neuron to be spatially linear or nonlinear and how we can experimentally measure these phenomena. Next, I introduce the neurons upstream to retinal ganglion cells, with focus on bipolar cells, which are the connecting elements between the photoreceptors (input to the retinal network) and the ganglion cells (output). This pivotal position makes bipolar cells an interesting target to study the assumption of linear spatial integration, yet due to their location buried in the middle of the retina it is challenging to measure their neural activity. Here, I present bipolar cell data where I ask whether the spatial linearity holds under artificial and natural visual stimuli. Through diverse analyses and computational models, I show that bipolar cells are more complex than previously thought and that they can already act as nonlinear processing elements at the level of their somatic membrane potential. Furthermore, through pharmacology and current measurements, I illustrate that the observed spatial nonlinearity arises at the excitatory inputs to bipolar cells. In the final part of my talk, I address the functional relevance of the nonlinearities in bipolar cells through combined recordings of bipolar and ganglion cells and I show that the nonlinearities in bipolar cells provide high spatial sensitivity to downstream ganglion cells. Overall, I demonstrate that simple linear assumptions do not always apply and more complex models are needed to describe what the retina “tells” the brain.

SeminarNeuroscienceRecording

Natural visual stimuli for mice

Thomas Euler
University of Tubingen
Jul 16, 2020

During the course of evolution, a species’ environment shapes its sensory abilities, as individuals with more optimized sensory abilities are more likely survive and procreate. Adaptations to the statistics of the natural environment can be observed along the early visual pathway and across species. Therefore, characterising the properties of natural environments and studying the representation of natural scenes along the visual pathway is crucial for advancing our understanding of the structure and function of the visual system. In the past 20 years, mice have become an important model in vision research, but the fact that they live in a different environment than primates and have different visual needs is rarely considered. One particular challenge for characterising the mouse’s visual environment is that they are dichromats with photoreceptors that detect UV light, which the typical camera does not record. This also has consequences for experimental visual stimulation, as the blue channel of computer screens fails to excite mouse UV cone photoreceptors. In my talk, I will describe our approach to recording “colour” footage of the habitat of mice – from the mouse’s perspective – and to studying retinal circuits in the ex vivo retina with natural movies.