Neural Data
neural data
Tim Vogels
The #Imbizo2024 is a southern hemisphere summer school aiming to promote computational neuroscience in Africa. It will bring together international and local students under the tutelage of the world's leading experts in the field. This four-week summer school aims to teach central ideas, methods, and practices of modern computational neuroscience through a combination of lectures and hands-on project work. Mornings will be devoted to lectures on topics across the breadth of computational neuroscience, including experimental underpinnings and machine learning analogues. The rest of the day will be spent working on research projects under the close supervision of expert tutors and faculty. Individual research projects will focus on the modelling of neurons, neural systems, behaviour, the analysis of state-of-the-art neural data, and the development of theories to explain experimental observations. It also includes a week focused on neuroscience-inspired machine learning.
I-Chun Lin, PhD
The Gatsby Computational Neuroscience Unit is a leading research centre focused on theoretical neuroscience and machine learning. We study (un)supervised and reinforcement learning in brains and machines; inference, coding and neural dynamics; Bayesian and kernel methods, and deep learning; with applications to the analysis of perceptual processing and cognition, neural data, signal and image processing, machine vision, network data and nonparametric hypothesis testing. The Unit provides a unique opportunity for a critical mass of theoreticians to interact closely with one another and with researchers at the Sainsbury Wellcome Centre for Neural Circuits and Behaviour (SWC), the Centre for Computational Statistics and Machine Learning (CSML) and related UCL departments such as Computer Science; Statistical Science; Artificial Intelligence; the ELLIS Unit at UCL; Neuroscience; and the nearby Alan Turing and Francis Crick Institutes. Our PhD programme provides a rigorous preparation for a research career. Students complete a 4-year PhD in either machine learning or theoretical/computational neuroscience, with minor emphasis in the complementary field. Courses in the first year provide a comprehensive introduction to both fields and systems neuroscience. Students are encouraged to work and interact closely with SWC/CSML researchers to take advantage of this uniquely multidisciplinary research environment.
Ahmed El Hady
We are seeking a PostDoc with a quantitative background who has finished (or about to finish) a doctoral degree in a quantitative field preferably but not limited to physics or engineering. The candidate should show enthusiasm for analysing large scale data sets that include but not limited to: behavioural, neural and physiological data. Experience with machine learning techniques and animal tracking software programs is preferred but not required. The researcher will be based in the integrative biophysics group at the University of Konstanz and Max Planck Institute of Animal Behavior, located in Konstanz, Germany. The Postdoc will be working as part of a recently funded Human Sciences Frontiers Program (HSFP) research grant ‘”Neurometabolic mechanisms underlying social foraging” in collaboration with the experimental groups of Robert Froemke (New York University) and Jee Hyun Choi (Korean Institute of Science and Technology). The project aims to understand neuro-metabolic mechanisms underlying social foraging. The PostDoc will have the opportunity to travel to the experimental collaborators in New York and Seoul. The Integrative Biophysics group at the CASCB led by Dr. Ahmed El Hady is focused on theoretical and computational understanding of mechanisms underlying foraging. The postdoc position will be embedded within the highly collaborative environment of the cluster for advanced study of collective behavior at the University of Konstanz.
I-Chun Lin
The Gatsby Computational Neuroscience Unit is a leading research centre focused on theoretical neuroscience and machine learning. We study (un)supervised and reinforcement learning in brains and machines; inference, coding and neural dynamics; Bayesian and kernel methods, and deep learning; with applications to the analysis of perceptual processing and cognition, neural data, signal and image processing, machine vision, network data and nonparametric hypothesis testing. The Unit provides a unique opportunity for a critical mass of theoreticians to interact closely with one another and with researchers at the Sainsbury Wellcome Centre for Neural Circuits and Behaviour (SWC), the Centre for Computational Statistics and Machine Learning (CSML) and related UCL departments such as Computer Science; Statistical Science; Artificial Intelligence; the ELLIS Unit at UCL; Neuroscience; and the nearby Alan Turing and Francis Crick Institutes. Our PhD programme provides a rigorous preparation for a research career. Students complete a 4-year PhD in either machine learning or theoretical/computational neuroscience, with minor emphasis in the complementary field. Courses in the first year provide a comprehensive introduction to both fields and systems neuroscience. Students are encouraged to work and interact closely with SWC/CSML researchers to take advantage of this uniquely multidisciplinary research environment.
Towards open meta-research in neuroimaging
When meta-research (research on research) makes an observation or points out a problem (such as a flaw in methodology), the project should be repeated later to determine whether the problem remains. For this we need meta-research that is reproducible and updatable, or living meta-research. In this talk, we introduce the concept of living meta-research, examine prequels to this idea, and point towards standards and technologies that could assist researchers in doing living meta-research. We introduce technologies like natural language processing, which can help with automation of meta-research, which in turn will make the research easier to reproduce/update. Further, we showcase our open-source litmining ecosystem, which includes pubget (for downloading full-text journal articles), labelbuddy (for manually extracting information), and pubextract (for automatically extracting information). With these tools, you can simplify the tedious data collection and information extraction steps in meta-research, and then focus on analyzing the text. We will then describe some living meta-research projects to illustrate the use of these tools. For example, we’ll show how we used GPT along with our tools to extract information about study participants. Essentially, this talk will introduce you to the concept of meta-research, some tools for doing meta-research, and some examples. Particularly, we want you to take away the fact that there are many interesting open questions in meta-research, and you can easily learn the tools to answer them. Check out our tools at https://litmining.github.io/
Consciousness in the cradle: on the emergence of infant experience
Although each of us was once a baby, infant consciousness remains mysterious and there is no received view about when, and in what form, consciousness first emerges. Some theorists defend a ‘late-onset’ view, suggesting that consciousness requires cognitive capacities which are unlikely to be in place before the child’s first birthday at the very earliest. Other theorists defend an ‘early-onset’ account, suggesting that consciousness is likely to be in place at birth (or shortly after) and may even arise during the third trimester. Progress in this field has been difficult, not just because of the challenges associated with procuring the relevant behavioral and neural data, but also because of uncertainty about how best to study consciousness in the absence of the capacity for verbal report or intentional behavior. This review examines both the empirical and methodological progress in this field, arguing that recent research points in favor of early-onset accounts of the emergence of consciousness.
Extracting computational mechanisms from neural data using low-rank RNNs
An influential theory in systems neuroscience suggests that brain function can be understood through low-dimensional dynamics [Vyas et al 2020]. However, a challenge in this framework is that a single computational task may involve a range of dynamic processes. To understand which processes are at play in the brain, it is important to use data on neural activity to constrain models. In this study, we present a method for extracting low-dimensional dynamics from data using low-rank recurrent neural networks (lrRNNs), a highly expressive and understandable type of model [Mastrogiuseppe & Ostojic 2018, Dubreuil, Valente et al. 2022]. We first test our approach using synthetic data created from full-rank RNNs that have been trained on various brain tasks. We find that lrRNNs fitted to neural activity allow us to identify the collective computational processes and make new predictions for inactivations in the original RNNs. We then apply our method to data recorded from the prefrontal cortex of primates during a context-dependent decision-making task. Our approach enables us to assign computational roles to the different latent variables and provides a mechanistic model of the recorded dynamics, which can be used to perform in silico experiments like inactivations and provide testable predictions.
Analyzing artificial neural networks to understand the brain
In the first part of this talk I will present work showing that recurrent neural networks can replicate broad behavioral patterns associated with dynamic visual object recognition in humans. An analysis of these networks shows that different types of recurrence use different strategies to solve the object recognition problem. The similarities between artificial neural networks and the brain presents another opportunity, beyond using them just as models of biological processing. In the second part of this talk, I will discuss—and solicit feedback on—a proposed research plan for testing a wide range of analysis tools frequently applied to neural data on artificial neural networks. I will present the motivation for this approach as well as the form the results could take and how this would benefit neuroscience.
Multi-level theory of neural representations in the era of large-scale neural recordings: Task-efficiency, representation geometry, and single neuron properties
A central goal in neuroscience is to understand how orchestrated computations in the brain arise from the properties of single neurons and networks of such neurons. Answering this question requires theoretical advances that shine light into the ‘black box’ of representations in neural circuits. In this talk, we will demonstrate theoretical approaches that help describe how cognitive and behavioral task implementations emerge from the structure in neural populations and from biologically plausible neural networks. First, we will introduce an analytic theory that connects geometric structures that arise from neural responses (i.e., neural manifolds) to the neural population’s efficiency in implementing a task. In particular, this theory describes a perceptron’s capacity for linearly classifying object categories based on the underlying neural manifolds’ structural properties. Next, we will describe how such methods can, in fact, open the ‘black box’ of distributed neuronal circuits in a range of experimental neural datasets. In particular, our method overcomes the limitations of traditional dimensionality reduction techniques, as it operates directly on the high-dimensional representations, rather than relying on low-dimensionality assumptions for visualization. Furthermore, this method allows for simultaneous multi-level analysis, by measuring geometric properties in neural population data, and estimating the amount of task information embedded in the same population. These geometric frameworks are general and can be used across different brain areas and task modalities, as demonstrated in the work of ours and others, ranging from the visual cortex to parietal cortex to hippocampus, and from calcium imaging to electrophysiology to fMRI datasets. Finally, we will discuss our recent efforts to fully extend this multi-level description of neural populations, by (1) investigating how single neuron properties shape the representation geometry in early sensory areas, and by (2) understanding how task-efficient neural manifolds emerge in biologically-constrained neural networks. By extending our mathematical toolkit for analyzing representations underlying complex neuronal networks, we hope to contribute to the long-term challenge of understanding the neuronal basis of tasks and behaviors.
Integrating theory-guided and data-driven approaches for measuring consciousness
Clinical assessment of consciousness is a significant issue, with recent research suggesting some brain-damaged patients who are assessed as unconscious are in fact conscious. Misdiagnosis of consciousness can also be detrimental when it comes to general anaesthesia, causing numerous psychological problems, including post-traumatic stress disorder. Avoiding awareness with overdose of anaesthetics, however, can also lead to cognitive impairment. Currently available objective assessment of consciousness is limited in accuracy or requires expensive equipment with major barriers to translation. In this talk, we will outline our recent theory-guided and data-driven approaches to develop new, optimized consciousness measures that will be robustly evaluated on an unprecedented breadth of high-quality neural data, recorded from the fly model system. We will overcome the subjective-choice problem in data-driven and theory-guided approaches with a comprehensive data analytic framework, which has never been applied to consciousness detection, integrating previously disconnected streams of research in consciousness detection to accelerate the translation of objective consciousness measures into clinical settings.
Pynapple: a light-weight python package for neural data analysis - webinar + tutorial
In systems neuroscience, datasets are multimodal and include data-streams of various origins: multichannel electrophysiology, 1- or 2-p calcium imaging, behavior, etc. Often, the exact nature of data streams are unique to each lab, if not each project. Analyzing these datasets in an efficient and open way is crucial for collaboration and reproducibility. In this combined webinar and tutorial, Adrien Peyrache and Guillaume Viejo will present Pynapple, a Python-based data analysis pipeline for systems neuroscience. Designed for flexibility and versatility, Pynapple allows users to perform cross-modal neural data analysis via a common programming approach which facilitates easy sharing of both analysis code and data.
Pynapple: a light-weight python package for neural data analysis - webinar + tutorial
In systems neuroscience, datasets are multimodal and include data-streams of various origins: multichannel electrophysiology, 1- or 2-p calcium imaging, behavior, etc. Often, the exact nature of data streams are unique to each lab, if not each project. Analyzing these datasets in an efficient and open way is crucial for collaboration and reproducibility. In this combined webinar and tutorial, Adrien Peyrache and Guillaume Viejo will present Pynapple, a Python-based data analysis pipeline for systems neuroscience. Designed for flexibility and versatility, Pynapple allows users to perform cross-modal neural data analysis via a common programming approach which facilitates easy sharing of both analysis code and data.
Neural circuits of visuospatial working memory
One elementary brain function that underlies many of our cognitive behaviors is the ability to maintain parametric information briefly in mind, in the time scale of seconds, to span delays between sensory information and actions. This component of working memory is fragile and quickly degrades with delay length. Under the assumption that behavioral delay-dependencies mark core functions of the working memory system, our goal is to find a neural circuit model that represents their neural mechanisms and apply it to research on working memory deficits in neuropsychiatric disorders. We have constrained computational models of spatial working memory with delay-dependent behavioral effects and with neural recordings in the prefrontal cortex during visuospatial working memory. I will show that a simple bump attractor model with weak inhomogeneities and short-term plasticity mechanisms can link neural data with fine-grained behavioral output in a trial-by-trial basis and account for the main delay-dependent limitations of working memory: precision, cardinal repulsion biases and serial dependence. I will finally present data from participants with neuropsychiatric disorders that suggest that serial dependence in working memory is specifically altered, and I will use the model to infer the possible neural mechanisms affected.
Timescales of neural activity: their inference, control, and relevance
Timescales characterize how fast the observables change in time. In neuroscience, they can be estimated from the measured activity and can be used, for example, as a signature of the memory trace in the network. I will first discuss the inference of the timescales from the neuroscience data comprised of the short trials and introduce a new unbiased method. Then, I will apply the method to the data recorded from a local population of cortical neurons from the visual area V4. I will demonstrate that the ongoing spiking activity unfolds across at least two distinct timescales - fast and slow - and the slow timescale increases when monkeys attend to the location of the receptive field. Which models can give rise to such behavior? Random balanced networks are known for their fast timescales; thus, a change in the neurons or network properties is required to mimic the data. I will propose a set of models that can control effective timescales and demonstrate that only the model with strong recurrent interactions fits the neural data. Finally, I will discuss the timescales' relevance for behavior and cortical computations.
Parametric control of flexible timing through low-dimensional neural manifolds
Biological brains possess an exceptional ability to infer relevant behavioral responses to a wide range of stimuli from only a few examples. This capacity to generalize beyond the training set has been proven particularly challenging to realize in artificial systems. How neural processes enable this capacity to extrapolate to novel stimuli is a fundamental open question. A prominent but underexplored hypothesis suggests that generalization is facilitated by a low-dimensional organization of collective neural activity, yet evidence for the underlying neural mechanisms remains wanting. Combining network modeling, theory and neural data analysis, we tested this hypothesis in the framework of flexible timing tasks, which rely on the interplay between inputs and recurrent dynamics. We first trained recurrent neural networks on a set of timing tasks while minimizing the dimensionality of neural activity by imposing low-rank constraints on the connectivity, and compared the performance and generalization capabilities with networks trained without any constraint. We then examined the trained networks, characterized the dynamical mechanisms underlying the computations, and verified their predictions in neural recordings. Our key finding is that low-dimensional dynamics strongly increases the ability to extrapolate to inputs outside of the range used in training. Critically, this capacity to generalize relies on controlling the low-dimensional dynamics by a parametric contextual input. We found that this parametric control of extrapolation was based on a mechanism where tonic inputs modulate the dynamics along non-linear manifolds in activity space while preserving their geometry. Comparisons with neural recordings in the dorsomedial frontal cortex of macaque monkeys performing flexible timing tasks confirmed the geometric and dynamical signatures of this mechanism. Altogether, our results tie together a number of previous experimental findings and suggest that the low-dimensional organization of neural dynamics plays a central role in generalizable behaviors.
Neural circuits for novel choices and for choice speed and accuracy changes in macaques
While most experimental tasks aim at isolating simple cognitive processes to study their neural bases, naturalistic behaviour is often complex and multidimensional. I will present two studies revealing previously uncharacterised neural circuits for decision-making in macaques. This was possible thanks to innovative experimental tasks eliciting sophisticated behaviour, bridging the human and non-human primate research traditions. Firstly, I will describe a specialised medial frontal circuit for novel choice in macaques. Traditionally, monkeys receive extensive training before neural data can be acquired, while a hallmark of human cognition is the ability to act in novel situations. I will show how this medial frontal circuit can combine the values of multiple attributes for each available novel item on-the-fly to enable efficient novel choices. This integration process is associated with a hexagonal symmetry pattern in the BOLD response, consistent with a grid-like representation of the space of all available options. We prove the causal role played by this circuit by showing that focussed transcranial ultrasound neuromodulation impairs optimal choice based on attribute integration and forces the subjects to default to a simpler heuristic decision strategy. Secondly, I will present an ongoing project addressing the neural mechanisms driving behaviour shifts during an evidence accumulation task that requires subjects to trade speed for accuracy. While perceptual decision-making in general has been thoroughly studied, both cognitively and neurally, the reasons why speed and/or accuracy are adjusted, and the associated neural mechanisms, have received little attention. We describe two orthogonal dimensions in which behaviour can vary (traditional speed-accuracy trade-off and efficiency) and we uncover independent neural circuits concerned with changes in strategy and fluctuations in the engagement level. The former involves the frontopolar cortex, while the latter is associated with the insula and a network of subcortical structures including the habenula.
The processing of price during purchase decision making: Are there neural differences among prosocial and non-prosocial consumers?
International organizations, governments and companies are increasingly committed to developing measures that encourage adoption of sustainable consumption patterns among the population. However, their success requires a deep understanding of the everyday purchasing decision process and the elements that shape it. Price is an element that stands out. Prior research concluded that the influence of price on purchase decisions varies across consumer profiles. Yet no consumer behavior study to date has assessed the differences of price processing among consumers adopting sustainable habits (prosocial) as opposed to those who have not (non-prosocial). This is the first study to resort to neuroimaging tools to explore the underlying neural mechanisms that reveal the effect of price on prosocial and non-prosocial consumers. Self-reported findings indicate that prosocial consumers place greater value on collective costs and benefits while non-prosocial consumers place a greater weight on price. The neural data gleaned from this analysis offers certain explanations as to the origin of the differences. Non-prosocial (vs. prosocial) consumers, in fact, exhibit a greater activation in brain areas involved with reward, valuation and choice when evaluating price information. These findings could steer managers to improve market segmentation and assist institutions in their design of campaigns fostering environmentally sustainable behaviors
When and (maybe) why do high-dimensional neural networks produce low-dimensional dynamics?
There is an avalanche of new data on activity in neural networks and the biological brain, revealing the collective dynamics of vast numbers of neurons. In principle, these collective dynamics can be of almost arbitrarily high dimension, with many independent degrees of freedom — and this may reflect powerful capacities for general computing or information. In practice, neural datasets reveal a range of outcomes, including collective dynamics of much lower dimension — and this may reflect other desiderata for neural codes. For what networks does each case occur? We begin by exploring bottom-up mechanistic ideas that link tractable statistical properties of network connectivity with the dimension of the activity that they produce. We then cover “top-down” ideas that describe how features of connectivity and dynamics that impact dimension arise as networks learn to perform fundamental computational tasks.
Rastermap: Extracting structure from high dimensional neural data
Large-scale neural recordings contain high-dimensional structure that cannot be easily captured by existing data visualization methods. We therefore developed an embedding algorithm called Rastermap, which captures highly nonlinear relationships between neurons, and provides useful visualizations by assigning each neuron to a location in the embedding space. Compared to standard algorithms such as t-SNE and UMAP, Rastermap finds finer and higher dimensional patterns of neural variability, as measured by quantitative benchmarks. We applied Rastermap to a variety of datasets, including spontaneous neural activity, neural activity during a virtual reality task, widefield neural imaging data during a 2AFC task, artificial neural activity from an agent playing atari games, and neural responses to visual textures. We found within these datasets unique subpopulations of neurons encoding abstract properties of the environment.
The processing of price during purchase decision making: Are there neural differences among prosocial and non-prosocial consumers?
International organizations, governments and companies are increasingly committed to developing measures that encourage adoption of sustainable consumption patterns among the population. However, their success requires a deep understanding of the everyday purchasing decision process and the elements that shape it. Price is an element that stands out. Prior research concluded that the influence of price on purchase decisions varies across consumer profiles. Yet no consumer behavior study to date has assessed the differences of price processing among consumers adopting sustainable habits (prosocial) as opposed to those who have not (non-prosocial). This is the first study to resort to neuroimaging tools to explore the underlying neural mechanisms that reveal the effect of price on prosocial and non-prosocial consumers. Self-reported findings indicate that prosocial consumers place greater value on collective costs and benefits while non-prosocial consumers place a greater weight on price. The neural data gleaned from this analysis offers certain explanations as to the origin of the differences. Non-prosocial (vs. prosocial) consumers, in fact, exhibit a greater activation in brain areas involved with reward, valuation and choice when evaluating price information. These findings could steer managers to improve market segmentation and assist institutions in their design of campaigns fostering environmentally sustainable behaviors
Strong and weak principles of neural dimension reduction
Large-scale, single neuron resolution recordings are inherently high-dimensional, with as many dimensions as neurons. To make sense of them, for many the answer is: reduce the number of dimensions. In this talk I argue we can distinguish weak and strong principles of neural dimension reduction. The weak principle is that dimension reduction is a convenient tool for making sense of complex neural data. The strong principle is that dimension reduction moves us closer to how neural circuits actually operate and compute. Elucidating these principles is crucial, for which we subscribe to provides radically different interpretations of the same dimension reduction techniques applied to the same data. I outline experimental evidence for each principle, but illustrate how we could make either the weak or strong principles appear to be true based on innocuous looking analysis decisions. These insights suggest arguments over low and high-dimensional neural activity need better constraints from both experiment and theory.
Understanding neural dynamics in high dimensions across multiple timescales: from perception to motor control and learning
Remarkable advances in experimental neuroscience now enable us to simultaneously observe the activity of many neurons, thereby providing an opportunity to understand how the moment by moment collective dynamics of the brain instantiates learning and cognition. However, efficiently extracting such a conceptual understanding from large, high dimensional neural datasets requires concomitant advances in theoretically driven experimental design, data analysis, and neural circuit modeling. We will discuss how the modern frameworks of high dimensional statistics and deep learning can aid us in this process. In particular we will discuss: (1) how unsupervised tensor component analysis and time warping can extract unbiased and interpretable descriptions of how rapid single trial circuit dynamics change slowly over many trials to mediate learning; (2) how to tradeoff very different experimental resources, like numbers of recorded neurons and trials to accurately discover the structure of collective dynamics and information in the brain, even without spike sorting; (3) deep learning models that accurately capture the retina’s response to natural scenes as well as its internal structure and function; (4) algorithmic approaches for simplifying deep network models of perception; (5) optimality approaches to explain cell-type diversity in the first steps of vision in the retina.
Choosing, fast and slow: Implications of prioritized-sampling models for understanding automaticity and control
The idea that behavior results from a dynamic interplay between automatic and controlled processing underlies much of decision science, but has also generated considerable controversy. In this talk, I will highlight behavioral and neural data showing how recently-developed computational models of decision making can be used to shed new light on whether, when, and how decisions result from distinct processes operating at different timescales. Across diverse domains ranging from altruism to risky choice biases and self-regulation, our work suggests that a model of prioritized attentional sampling and evidence accumulation may provide an alternative explanation for many phenomena previously interpreted as supporting dual process models of choice. However, I also show how some features of the model might be taken as support for specific aspects of dual-process models, providing a way to reconcile conflicting accounts and generating new predictions and insights along the way.
Untangling brain wide current flow using neural network models
Rajanlab designs neural network models constrained by experimental data, and reverse engineers them to figure out how brain circuits function in health and disease. Recently, we have been developing a powerful new theory-based framework for “in-vivo tract tracing” from multi-regional neural activity collected experimentally. We call this framework CURrent-Based Decomposition (CURBD). CURBD employs recurrent neural networks (RNNs) directly constrained, from the outset, by time series measurements acquired experimentally, such as Ca2+ imaging or electrophysiological data. Once trained, these data-constrained RNNs let us infer matrices quantifying the interactions between all pairs of modeled units. Such model-derived “directed interaction matrices” can then be used to separately compute excitatory and inhibitory input currents that drive a given neuron from all other neurons. Therefore different current sources can be de-mixed – either within the same region or from other regions, potentially brain-wide – which collectively give rise to the population dynamics observed experimentally. Source de-mixed currents obtained through CURBD allow an unprecedented view into multi-region mechanisms inaccessible from measurements alone. We have applied this method successfully to several types of neural data from our experimental collaborators, e.g., zebrafish (Deisseroth lab, Stanford), mice (Harvey lab, Harvard), monkeys (Rudebeck lab, Sinai), and humans (Rutishauser lab, Cedars Sinai), where we have discovered both directed interactions brain wide and inter-area currents during different types of behaviors. With this powerful framework based on data-constrained multi-region RNNs and CURrent Based Decomposition (CURBD), we ask if there are conserved multi-region mechanisms across different species, as well as identify key divergences.
Inferring brain-wide current flow using data-constrained neural network models
Rajanlab designs neural network models constrained by experimental data, and reverse engineers them to figure out how brain circuits function in health and disease. Recently, we have been developing a powerful new theory-based framework for “in-vivo tract tracing” from multi-regional neural activity collected experimentally. We call this framework CURrent-Based Decomposition (CURBD). CURBD employs recurrent neural networks (RNNs) directly constrained, from the outset, by time series measurements acquired experimentally, such as Ca2+ imaging or electrophysiological data. Once trained, these data-constrained RNNs let us infer matrices quantifying the interactions between all pairs of modeled units. Such model-derived “directed interaction matrices” can then be used to separately compute excitatory and inhibitory input currents that drive a given neuron from all other neurons. Therefore different current sources can be de-mixed – either within the same region or from other regions, potentially brain-wide – which collectively give rise to the population dynamics observed experimentally. Source de-mixed currents obtained through CURBD allow an unprecedented view into multi-region mechanisms inaccessible from measurements alone. We have applied this method successfully to several types of neural data from our experimental collaborators, e.g., zebrafish (Deisseroth lab, Stanford), mice (Harvey lab, Harvard), monkeys (Rudebeck lab, Sinai), and humans (Rutishauser lab, Cedars Sinai), where we have discovered both directed interactions brain wide and inter-area currents during different types of behaviors. With this framework based on data-constrained multi-region RNNs and CURrent Based Decomposition (CURBD), we can ask if there are conserved multi-region mechanisms across different species, as well as identify key divergences.
Dimensions of variability in circuit models of cortex
Cortical circuits receive multiple inputs from upstream populations with non-overlapping stimulus tuning preferences. Both the feedforward and recurrent architectures of the receiving cortical layer will reflect this diverse input tuning. We study how population-wide neuronal variability propagates through a hierarchical cortical network receiving multiple, independent, tuned inputs. We present new analysis of in vivo neural data from the primate visual system showing that the number of latent variables (dimension) needed to describe population shared variability is smaller in V4 populations compared to those of its downstream visual area PFC. We successfully reproduce this dimensionality expansion from our V4 to PFC neural data using a multi-layer spiking network with structured, feedforward projections and recurrent assemblies of multiple, tuned neuron populations. We show that tuning-structured connectivity generates attractor dynamics within the recurrent PFC current, where attractor competition is reflected in the high dimensional shared variability across the population. Indeed, restricting the dimensionality analysis to activity from one attractor state recovers the low-dimensional structure inherited from each of our tuned inputs. Our model thus introduces a framework where high-dimensional cortical variability is understood as ``time-sharing’’ between distinct low-dimensional, tuning-specific circuit dynamics.
Theoretical and computational approaches to neuroscience with complex models in high dimensions across multiple timescales: from perception to motor control and learning
Remarkable advances in experimental neuroscience now enable us to simultaneously observe the activity of many neurons, thereby providing an opportunity to understand how the moment by moment collective dynamics of the brain instantiates learning and cognition. However, efficiently extracting such a conceptual understanding from large, high dimensional neural datasets requires concomitant advances in theoretically driven experimental design, data analysis, and neural circuit modeling. We will discuss how the modern frameworks of high dimensional statistics and deep learning can aid us in this process. In particular we will discuss: how unsupervised tensor component analysis and time warping can extract unbiased and interpretable descriptions of how rapid single trial circuit dynamics change slowly over many trials to mediate learning; how to tradeoff very different experimental resources, like numbers of recorded neurons and trials to accurately discover the structure of collective dynamics and information in the brain, even without spike sorting; deep learning models that accurately capture the retina’s response to natural scenes as well as its internal structure and function; algorithmic approaches for simplifying deep network models of perception; optimality approaches to explain cell-type diversity in the first steps of vision in the retina.
Using noise to probe recurrent neural network structure and prune synapses
Many networks in the brain are sparsely connected, and the brain eliminates synapses during development and learning. How could the brain decide which synapses to prune? In a recurrent network, determining the importance of a synapse between two neurons is a difficult computational problem, depending on the role that both neurons play and on all possible pathways of information flow between them. Noise is ubiquitous in neural systems, and often considered an irritant to be overcome. In the first part of this talk, I will suggest that noise could play a functional role in synaptic pruning, allowing the brain to probe network structure and determine which synapses are redundant. I will introduce a simple, local, unsupervised plasticity rule that either strengthens or prunes synapses using only synaptic weight and the noise-driven covariance of the neighboring neurons. For a subset of linear and rectified-linear networks, this rule provably preserves the spectrum of the original matrix and hence preserves network dynamics even when the fraction of pruned synapses asymptotically approaches 1. The plasticity rule is biologically-plausible and may suggest a new role for noise in neural computation. Time permitting, I will then turn to the problem of extracting structure from neural population data sets using dimensionality reduction methods. I will argue that nonlinear structures naturally arise in neural data and show how these nonlinearities cause linear methods of dimensionality reduction, such as Principal Components Analysis, to fail dramatically in identifying low-dimensional structure.
Inferring stochastic low-rank recurrent neural networks from neural data
Bernstein Conference 2024
Gaussian Partial Information Decomposition: Quantifying Inter-areal Interactions in High-Dimensional Neural Data
COSYNE 2022
Gaussian Partial Information Decomposition: Quantifying Inter-areal Interactions in High-Dimensional Neural Data
COSYNE 2022
A Method for Testing Bayesian Models Using Neural Data
COSYNE 2023
Neuroformer: A Transformer Framework for Multimodal Neural Data Analysis
COSYNE 2023
A simple method to improve regression and correlation coefficient estimates with noisy neural data
COSYNE 2023
Inferring stochastic low-rank recurrent neural networks from neural data
COSYNE 2025
Leveraging the dual nature of rows and columns in neural data
COSYNE 2025
Meta-Dynamical State Space Models for Integrative Neural Data Analysis
COSYNE 2025
Metamers and Mixtures: Testing Bayesian models using neural data
COSYNE 2025
Nonlinear Dynamical Modeling of Behavior and Multimodal Neural Data
COSYNE 2025
BearMind: A pipeline for batch examination & analysis of raw miniscopic neural data
FENS Forum 2024
Decoding behaviour from neural data using LSTM networks
Neuromatch 5