← Back

Neural Rosettes

Topic spotlight
TopicWorld Wide

neural rosettes

Discover seminars, jobs, and research tagged with neural rosettes across World Wide.
2 curated items1 Seminar1 ePoster
Updated over 4 years ago
2 items · neural rosettes
2 results
SeminarNeuroscience

Application of Airy beam light sheet microscopy to examine early neurodevelopmental structures in 3D hiPSC-derived human cortical spheroids

Deep Adhya
University of Cambridge, Department of Psychiatry
May 11, 2021

The inability to observe relevant biological processes in vivo significantly restricts human neurodevelopmental research. Advances in appropriate in vitro model systems, including patient-specific human brain organoids and human cortical spheroids (hCSs), offer a pragmatic solution to this issue. In particular, hCSs are an accessible method for generating homogenous organoids of dorsal telencephalic fate, which recapitulate key aspects of human corticogenesis, including the formation of neural rosettes—in vitro correlates of the neural tube. These neurogenic niches give rise to neural progenitors that subsequently differentiate into neurons. Studies differentiating induced pluripotent stem cells (hiPSCs) in 2D have linked atypical formation of neural rosettes with neurodevelopmental disorders such as autism spectrum conditions. Thus far, however, conventional methods of tissue preparation in this field limit the ability to image these structures in three-dimensions within intact hCS or other 3D preparations. To overcome this limitation, we have sought to optimise a methodological approach to process hCSs to maximise the utility of a novel Airy-beam light sheet microscope (ALSM) to acquire high resolution volumetric images of internal structures within hCS representative of early developmental time points.

ePoster

FOXG1 controls cellular function and tissue architecture in 2D neural rosettes and 3D cerebral organoid models of epilepsy

Oliver Davis, Dwaipayan Adhya, Wai Kit Chan, John Mason, Andras Lakatos, Srinjan Basu

FENS Forum 2024