← Back

Neural Signals

Topic spotlight
TopicWorld Wide

neural signals

Discover seminars, jobs, and research tagged with neural signals across World Wide.
7 curated items4 Seminars3 ePosters
Updated about 1 year ago
7 items · neural signals
7 results
SeminarNeuroscience

LLMs and Human Language Processing

Maryia Toneva, Ariel Goldstein, Jean-Remi King
Max Planck Institute of Software Systems; Hebrew University; École Normale Supérieure
Nov 28, 2024

This webinar convened researchers at the intersection of Artificial Intelligence and Neuroscience to investigate how large language models (LLMs) can serve as valuable “model organisms” for understanding human language processing. Presenters showcased evidence that brain recordings (fMRI, MEG, ECoG) acquired while participants read or listened to unconstrained speech can be predicted by representations extracted from state-of-the-art text- and speech-based LLMs. In particular, text-based LLMs tend to align better with higher-level language regions, capturing more semantic aspects, while speech-based LLMs excel at explaining early auditory cortical responses. However, purely low-level features can drive part of these alignments, complicating interpretations. New methods, including perturbation analyses, highlight which linguistic variables matter for each cortical area and time scale. Further, “brain tuning” of LLMs—fine-tuning on measured neural signals—can improve semantic representations and downstream language tasks. Despite open questions about interpretability and exact neural mechanisms, these results demonstrate that LLMs provide a promising framework for probing the computations underlying human language comprehension and production at multiple spatiotemporal scales.

SeminarNeuroscienceRecording

NMC4 Short Talk: Untangling Contributions of Distinct Features of Images to Object Processing in Inferotemporal Cortex

Hanxiao Lu
Yale University
Nov 30, 2021

How do humans perceive daily objects of various features and categorize these seemingly intuitive and effortless mental representations? Prior literature focusing on the role of the inferotemporal region (IT) has revealed object category clustering that is consistent with the semantic predefined structure (superordinate, ordinate, subordinate). It has however been debated whether the neural signals in the IT regions are a reflection of such categorical hierarchy [Wen et al.,2018; Bracci et al., 2017]. Visual attributes of images that correlated with semantic and category dimensions may have confounded these prior results. Our study aimed to address this debate by building and comparing models using the DNN AlexNet, to explain the variance in representational dissimilarity matrix (RDM) of neural signals in the IT region. We found that mid and high level perceptual attributes of the DNN model contribute the most to neural RDMs in the IT region. Semantic categories, as in predefined structure, were moderately correlated with mid to high DNN layers (r = [0.24 - 0.36]). Variance partitioning analysis also showed that the IT neural representations were mostly explained by DNN layers, while semantic categorical RDMs brought little additional information. In light of these results, we propose future works should focus more on the specific role IT plays in facilitating the extraction and coding of visual features that lead to the emergence of categorical conceptualizations.

SeminarNeuroscienceRecording

Dynamic computation in the retina by retuning of neurons and synapses

Leon Lagnado
University of Sussex
Sep 15, 2020

How does a circuit of neurons process sensory information? And how are transformations of neural signals altered by changes in synaptic strength? We investigate these questions in the context of the visual system and the lateral line of fish. A distinguishing feature of our approach is the imaging of activity across populations of synapses – the fundamental elements of signal transfer within all brain circuits. A guiding hypothesis is that the plasticity of neurotransmission plays a major part in controlling the input-output relation of sensory circuits, regulating the tuning and sensitivity of neurons to allow adaptation or sensitization to particular features of the input. Sensory systems continuously adjust their input-output relation according to the recent history of the stimulus. A common alteration is a decrease in the gain of the response to a constant feature of the input, termed adaptation. For instance, in the retina, many of the ganglion cells (RGCs) providing the output produce their strongest responses just after the temporal contrast of the stimulus increases, but the response declines if this input is maintained. The advantage of adaptation is that it prevents saturation of the response to strong stimuli and allows for continued signaling of future increases in stimulus strength. But adaptation comes at a cost: a reduced sensitivity to a future decrease in stimulus strength. The retina compensates for this loss of information through an intriguing strategy: while some RGCs adapt following a strong stimulus, a second population gradually becomes sensitized. We found that the underlying circuit mechanisms involve two opposing forms of synaptic plasticity in bipolar cells: synaptic depression causes adaptation and facilitation causes sensitization. Facilitation is in turn caused by depression in inhibitory synapses providing negative feedback. These opposing forms of plasticity can cause simultaneous increases and decreases in contrast-sensitivity of different RGCs, which suggests a general framework for understanding the function of sensory circuits: plasticity of both excitatory and inhibitory synapses control dynamic changes in tuning and gain.

ePoster

Brainwide transformation of neural signals underlying perception

Blake Russell, Robert Lees, Adam Packer, Armin Lak

FENS Forum 2024

ePoster

Deep learning-driven compression of extracellular neural signals

János Rokai, István Ulbert, Gergely Márton

FENS Forum 2024

ePoster

What does my network learn? Assessing the interpretability of deep learning for neural signals

Pinar Göktepe-Kavis, Florence M Aellen, Sigurd L Alnes, Athina Tzovara

FENS Forum 2024